17 research outputs found

    Enhancement Effects of Martentoxin on Glioma BK Channel and BK Channel (α+β1) Subtypes

    Get PDF
    BACKGROUND: BK channels are usually activated by membrane depolarization and cytoplasmic Ca(2+). Especially,the activity of BK channel (α+β4) can be modulated by martentoxin, a 37 residues peptide, with Ca(2+)-dependent manner. gBK channel (glioma BK channel) and BK channel (α+β1) possessed higher Ca(2+) sensitivity than other known BK channel subtypes. METHODOLOGY AND PRINCIPAL FINDINGS: The present study investigated the modulatory characteristics of martentoxin on these two BK channel subtypes by electrophysiological recordings, cell proliferation and Ca(2+) imaging. In the presence of cytoplasmic Ca(2+), martentoxin could enhance the activities of both gBK and BK channel (α+β1) subtypes in dose-dependent manner with EC(50) of 46.7 nM and 495 nM respectively, while not shift the steady-state activation of these channels. The enhancement ratio of martentoxin on gBK and BK channel (α+β1) was unrelated to the quantitative change of cytoplasmic Ca(2+) concentrations though the interaction between martentoxin and BK channel (α+β1) was accelerated under higher cytoplasmic Ca(2+). The selective BK pore blocker iberiotoxin could fully abolish the enhancement of these two BK subtypes induced by martentoxin, suggesting that the auxiliary β subunit might contribute to the docking for martentoxin. However, in the absence of cytoplasmic Ca(2+), the activity of gBK channel would be surprisingly inhibited by martentoxin while BK channel (α+β1) couldn't be affected by the toxin. CONCLUSIONS AND SIGNIFICANCE: Thus, the results shown here provide the novel evidence that martentoxin could increase the two Ca(2+)-hypersensitive BK channel subtypes activities in a new manner and indicate that β subunit of these BK channels plays a vital role in this enhancement by martentoxin

    Effects of Wolves on Elk and Cattle Behaviors: Implications for Livestock Production and Wolf Conservation

    Get PDF
    BACKGROUND: In many areas, livestock are grazed within wolf (Canis lupus) range. Predation and harassment of livestock by wolves creates conflict and is a significant challenge for wolf conservation. Wild prey, such as elk (Cervus elaphus), perform anti-predator behaviors. Artificial selection of cattle (Bos taurus) might have resulted in attenuation or absence of anti-predator responses, or in erratic and inconsistent responses. Regardless, such responses might have implications on stress and fitness. METHODOLOGY/PRINCIPAL FINDINGS: We compared elk and cattle anti-predator responses to wolves in southwest Alberta, Canada within home ranges and livestock pastures, respectively. We deployed satellite- and GPS-telemetry collars on wolves, elk, and cattle (n = 16, 10 and 78, respectively) and measured seven prey response variables during periods of wolf presence and absence (speed, path sinuosity, time spent head-up, distance to neighboring animals, terrain ruggedness, slope and distance to forest). During independent periods of wolf presence (n = 72), individual elk increased path sinuosity (Z = -2.720, P = 0.007) and used more rugged terrain (Z = -2.856, P = 0.004) and steeper slopes (Z = -3.065, P = 0.002). For cattle, individual as well as group behavioral analyses were feasible and these indicated increased path sinuosity (Z = -2.720, P = 0.007) and decreased distance to neighbors (Z = -2.551, P = 0.011). In addition, cattle groups showed a number of behavioral changes concomitant to wolf visits, with variable direction in changes. CONCLUSIONS/SIGNIFICANCE: Our results suggest both elk and cattle modify their behavior in relation to wolf presence, with potential energetic costs. Our study does not allow evaluating the efficacy of anti-predator behaviors, but indicates that artificial selection did not result in their absence in cattle. The costs of wolf predation on livestock are often compensated considering just the market value of the animal killed. However, society might consider refunding some additional costs (e.g., weight loss and reduced reproduction) that might be associated with the changes in cattle behaviors that we documented

    Sorghum biomass: a novel renewable carbon source for industrial bioproducts

    Get PDF
    Sorghum (Sorghum bicolor [L.] Moench) biomass is considered as one of the potential renewable sources of energy for economic development and environmental sustainability, owing to its wide adaptability, C4 photosynthetic pathway, and high nitrogen and water use efficiency. This plant could be effectively utilized as a source of food (grains), fodder (stem) and also as feedstock (lignin, cellulose and hemicellulose) for production of industrial solvents including biofuels. Genetic manipulation of sorghum has resulted in development of improved cultivars of sweet, high-biomass and low lignin sorghums (bmr) and so on. with increased productivity, palatability, along with reduced recalcitrance and enhanced tolerance to abiotic stresses, which can meet the diverse needs of population. This Review elaborates on recent developments in sorghum research towards conversion of cellulose and hemicellulosic components of sorghum biomass to biofuel and value added biochemicals by developing affordable processes at different sectorial levels

    Inhibition of Martentoxin on Neuronal BK Channel Subtype (α+β4): Implications for a Novel Interaction Model

    Get PDF
    Martentoxin as a 37-residue peptide was capable of blocking large-conductance Ca2+-activated K+ (BK) channels in adrenal medulla chromaffin cells. This study investigated the pharmacological discrimination of martentoxin on BK channel subtypes. The results showed that the iberiotoxin-insensitive neuronal BK channels (α+β4) could be potently blocked by martentoxin (IC50 = ∼80 nM). In contrast, the iberiotoxin-sensitive BK channel consisting of only α-subunit was less sensitive to martentoxin. Distinctively, martentoxin inhibited neuronal BK channels (α+β4) with a novel interaction mode. Two possible interaction sites of neuronal BK channels (α+β4) might be responsible for the binding with martentoxin: one for trapping and the other located at the pore region for blocking. In addition, the inhibition of martentoxin on neuronal BK channels (α+β4) depended on cytoplasmic Ca2+ concentration. On the other hand, in vivo experiments from EEG recordings suggested that neuronal BK channels (α+β4) were the primary target of martentoxin. Therefore, this research not only sheds light on a unique ligand for neuronal BK channels (α+β4), but also highlights a novel model approach for the interaction between K+ channels and specific-ligands

    Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres

    No full text
    Structural centrosome aberrations are frequently observed in early stage carcinomas, but their role in malignant transformation is poorly understood. Here, we examined the impact of overexpression of Ninein-like protein (Nlp) on the architecture of polarized epithelia in three-dimensional mammospheres. When Nlp was overexpressed to levels resembling those seen in human tumors, it formed striking centrosome-related bodies (CRBs), which sequestered Ninein and affected the kinetics of microtubule (MT) nucleation and release. In turn, the profound reorganization of the MT cytoskeleton resulted in mislocalization of several adhesion and junction proteins as well as the tumor suppressor Scribble, resulting in the disruption of epithelial polarity, cell-cell interactions and mammosphere architecture. Remarkably, cells harboring Nlp-CRBs displayed an enhanced proliferative response to epidermal growth factor. These results demonstrate that structural centrosome aberrations cause not only the disruption of epithelial polarity but also favor overproliferation, two phenotypes typically associated with human carcinomas.Oncogene advance online publication, 14 September 2015; doi:10.1038/onc.2015.332
    corecore