1,018 research outputs found

    Anyonic interferometry and protected memories in atomic spin lattices

    Full text link
    Strongly correlated quantum systems can exhibit exotic behavior called topological order which is characterized by non-local correlations that depend on the system topology. Such systems can exhibit remarkable phenomena such as quasi-particles with anyonic statistics and have been proposed as candidates for naturally fault-tolerant quantum computation. Despite these remarkable properties, anyons have never been observed in nature directly. Here we describe how to unambiguously detect and characterize such states in recently proposed spin lattice realizations using ultra-cold atoms or molecules trapped in an optical lattice. We propose an experimentally feasible technique to access non-local degrees of freedom by performing global operations on trapped spins mediated by an optical cavity mode. We show how to reliably read and write topologically protected quantum memory using an atomic or photonic qubit. Furthermore, our technique can be used to probe statistics and dynamics of anyonic excitations.Comment: 14 pages, 6 figure

    Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria

    Get PDF
    The similarity in the genetic regulation of arthropod and vertebrate appendage formation has been interpreted as the product of a plesiomorphic gene network that was primitively involved in bilaterian appendage development and co-opted to build appendages (in modern phyla) that are not historically related as structures. Data from lophotrochozoans are needed to clarify the pervasiveness of plesiomorphic appendage forming mechanisms. We assayed the expression of three arthropod and vertebrate limb gene orthologs, Distal-less (Dll), dachshund (dac), and optomotor blind (omb), in direct-developing juveniles of the polychaete Neanthes arenaceodentata. Parapodial Dll expression marks premorphogenetic notopodia and neuropodia, becoming restricted to the bases of notopodial cirri and to ventral portions of neuropodia. In outgrowing cephalic appendages, Dll activity is primarily restricted to proximal domains. Dll expression is also prominent in the brain. dac expression occurs in the brain, nerve cord ganglia, a pair of pharyngeal ganglia, presumed interneurons linking a pair of segmental nerves, and in newly differentiating mesoderm. Domains of omb expression include the brain, nerve cord ganglia, one pair of anterior cirri, presumed precursors of dorsal musculature, and the same pharyngeal ganglia and presumed interneurons that express dac. Contrary to their roles in outgrowing arthropod and vertebrate appendages, Dll, dac, and omb lack comparable expression in Neanthes appendages, implying independent evolution of annelid appendage development. We infer that parapodia and arthropodia are not structurally or mechanistically homologous (but their primordia might be), that Dll’s ancestral bilaterian function was in sensory and central nervous system differentiation, and that locomotory appendages possibly evolved from sensory outgrowths

    Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation

    Get PDF
    WNK1 [with no lysine (K)] and WNK4 regulate blood pressure by controlling the activity of ion co-transporters in the kidney. Groundbreaking work has revealed that the ubiquitylation and hence levels of WNK isoforms are controlled by a Cullin-RING E3 ubiquitin ligase complex (CRL3KLHL3) that utilizes CUL3 (Cullin3) and its substrate adaptor, KLHL3 (Kelch-like protein 3). Loss-of-function mutations in either CUL3 or KLHL3 cause the hereditary high blood pressure disease Gordon's syndrome by stabilizing WNK isoforms. KLHL3 binds to a highly conserved degron motif located within the C-terminal non-catalytic domain of WNK isoforms. This interaction is essential for ubiquitylation by CRL3KLHL3 and disease-causing mutations in WNK4 and KLHL3 exert their effects on blood pressure by disrupting this interaction. In the present study, we report on the crystal structure of the KLHL3 Kelch domain in complex with the WNK4 degron motif. This reveals an intricate web of interactions between conserved residues on the surface of the Kelch domain β-propeller and the WNK4 degron motif. Importantly, many of the disease-causing mutations inhibit binding by disrupting critical interface contacts. We also present the structure of the WNK4 degron motif in complex with KLHL2 that has also been reported to bind WNK4. This confirms that KLHL2 interacts with WNK kinases in a similar manner to KLHL3, but strikingly different to how another KLHL protein, KEAP1 (Kelch-like enoyl-CoA hydratase-associated protein 1), binds to its substrate NRF2 (nuclear factor-erythroid 2-related factor 2). The present study provides further insights into how Kelch-like adaptor proteins recognize their substrates and provides a structural basis for how mutations in WNK4 and KLHL3 lead to hypertension

    Chandra survey of nearby highly inclined disc galaxies - III. Comparison with hydrodynamical simulations of circumgalactic coronae

    Get PDF
    X-ray observations of circumgalactic coronae provide a valuable means by which to test galaxy formation theories. Two primary mechanisms are thought to be responsible for the establishment of such coronae: accretion of intergalactic gas and/or galactic feedback. In this paper, we first compare our Chandra sample of galactic coronae of 53 nearby highly-inclined disc galaxies to an analytical model considering only the accretion of intergalactic gas. We confirm the existing conclusion that this pure accretion model substantially over-predicts the coronal emission. We then select 30 field galaxies from our original sample, and correct their coronal luminosities to uniformly compare them to deep X-ray measurements of several massive disc galaxies from the literature, as well as to a comparable sample of simulated galaxies drawn from the Galaxies-Intergalactic Medium Interaction Calculation (GIMIC). These simulations explicitly model both accretion and supernovae feedback and yield galaxies that exhibit X-ray properties in broad agreement with our observational sample. However, notable and potentially instructive discrepancies exist between the slope and scatter of the LX −M200 and LX − SFR relations, highlighting some known shortcomings of GIMIC, for example, the absence of AGN feedback, and possibly the adoption of constant stellar feedback parameters. The simulated galaxies exhibit a tight correlation (with little scatter) between coronal luminosity and halo mass. Having inferredM200 for our observational sample via the Tully-Fisher relation, we find a weaker and more scattered correlation. In the simulated and observed samples alike, massive non-starburst galaxies above a typical transition mass of M∗ � 2×1011 M⊙ or M200 � 1013 M⊙ tend to have higher LX/M∗ and LX/M200 than low-mass counterparts, indicating that the accretion of intergalactic gas plays an increasingly important role in establishing the observable hot circumgalactic medium with increasing galaxy mass. Subject headings: galaxies: general—galaxies: halos—galaxies: normal—X-rays: galaxie

    The role of the smartphone in the transition from medical student to foundation trainee: a qualitative interview and focus group study

    Get PDF
    Background The transition from medical student to junior doctor is one of the most challenging in medicine, affecting both doctor and patient health. Opportunities to support this transition have arisen from advances in mobile technology and increased smartphone ownership. Methods This qualitative study consisted of six in-depth interviews and two focus groups with Foundation Year 1 Trainees (intern doctors) and final year medical students within the same NHS Trust. A convenience sample of 14 participants was recruited using chain sampling. Interviews and focus groups were recorded, transcribed verbatim, analysed in accordance with thematic analysis and presented below in keeping with the standards for reporting qualitative research. Results Participants represented both high and low intensity users. They used their smartphones to support their prescribing practices, especially antimicrobials through the MicroGuide™ app. Instant messaging, via WhatsApp, contributed to the existing bleep system, allowing coordination of both work and learning opportunities across place and time. Clinical photographs were recognised as being against regulations but there had still been occasions of use despite this. Concerns about public and colleague perceptions were important to both students and doctors, with participants describing various tactics employed to successfully integrate phone use into their practices. Conclusion This study suggests that both final year medical students and foundation trainees use smartphones in everyday practice. Medical schools and healthcare institutions should seek to integrate such use into core curricula/training to enable safe and effective use and further ease the transition to foundation training. We recommend juniors are reminded of the potential risks to patient confidentiality associated with smartphone use

    Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence

    Get PDF
    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season

    Cadmium-Induced Oxidative Stress and Apoptotic Changes in the Testis of Freshwater Crab, Sinopotamon henanense

    Get PDF
    Cadmium (Cd), one of the most toxic environmental and industrial pollutants, is known to exert gonadotoxic and spermiotoxic effects. In the present study, we examined the toxic effect of Cd on the testis of freshwater crab, Sinopotamon henanense. Crabs were exposed to different Cd concentrations (from 0 to 116.00 mg·L−1) for 7 d. Oxidative stress and apoptotic changes in the testes were detected. The activities of SOD, GPx and CAT initially increased and subsequently decreased with increasing Cd concentrations, which was accompanied with the increase in malondialdehyde (MDA) and H2O2 content in a concentration-dependent manner. Typical morphological characteristic and physiological changes of apoptosis were observed using a variety of methods (HE staining, AO/EB double fluorescent staining, Transmission Electron Microscope observation and DNA fragmentation analysis), and the activities of caspase-3 and caspase-9 were increased in a concentration-dependent manner after Cd exposure. These results led to the conclusion that Cd could induced oxidative damage as well as apoptosis in the testis, and the apoptotic processes may be mediated via mitochondria-dependent apoptosis pathway by regulating the activities of caspase-3 and caspase-9

    Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning

    Get PDF
    Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world

    Effect of compost-, sand-, or gypsum-amended waste foundry sands on turfgrass yield and nutrient content

    Get PDF
    To prevent the 7 to 11 million metric tons of waste foundry sand (WFS) produced annually in the USA from entering landfi lls, current research is focused on the reuse of WFSs as soil amendments. Th e eff ects of diff erent WFS-containing amendments on turfgrass growth and nutrient content were tested by planting perennial ryegrass (Lolium perenne L.) and tall fescue (Schedonorus phoenix (Scop.) Holub) in diff erent blends containing WFS. Blends of WFS were created with compost or acid-washed sand (AWS) at varying percent by volume with WFS or by amendment with gypsum (9.6 g gypsum kg–1 WFS). Measurements of soil strength, shoot and root dry weight, plant surface coverage, and micronutrients (Al, Fe, Mn, Cu, Zn, B, Na) and macronutrients (N, P, K, S, Ca, Mg) were performed for each blend and compared with pure WFS and with a commercial potting media control. Results showed that strength was not a factor for any of the parameters studied, but the K/Na base saturation ratio of WFS:compost mixes was highly correlated with total shoot dry weight for perennial ryegrass (r = 0.995) and tall fescue (r = 0.94). Th is was further substantiated because total shoot dry weight was also correlated with shoot K/Na concentration of perennial ryegrass (r = 0.99) and tall fescue (r = 0.95). A compost blend containing 40% WFS was determined to be the optimal amendment for the reuse of WFS because it incorporated the greatest possible amount of WFS without major reduction in turfgrass growth
    corecore