138 research outputs found

    Cosmological reconstruction of realistic modified F(R) gravities

    Get PDF
    The cosmological reconstruction scheme for modified F(R)F(R) gravity is developed in terms of e-folding (or, redshift). It is demonstrated how any FRW cosmology may emerge from specific F(R)F(R) theory. The specific examples of well-known cosmological evolution are reconstructed, including Λ\LambdaCDM cosmology, deceleration with transition to phantom superacceleration era which may develop singularity or be transient. The application of this scheme to viable F(R)F(R) gravities unifying inflation with dark energy era is proposed. The additional reconstruction of such models leads to non-leading gravitational correction mainly relevant at the early/late universe and helping to pass the cosmological bounds (if necessary). It is also shown how cosmological reconstruction scheme may be generalized in the presence of scalar field.Comment: LaTex 11 page

    Combined dynamics of mercury and terrigenous organic matter following impoundment of Churchill Falls Hydroelectric Reservoir, Labrador

    Get PDF
    Sediments from two recently (40 years) flooded lakes (Gabbro lake and Sandgirt lake) and an unflooded lake (Atikonak lake) were sampled to investigate the effects of reservoir impoundment on mercury (Hg) and terrigenous organic matter (TOM) loading in the Churchill Falls Hydroelectric complex in Labrador, Canada. Lignin biomarkers in TOM, which exclusively derive from terrestrial vegetation, were used as biomarkers for the presence and source origin of TOM—and for Hg due to their close associations—in sediments. In the two flooded Gabbro and Sandgirt lakes, we observed drastic increases in total mercury concentrations, T-[Hg], in sediments, which temporally coincided with the time of reservoir impoundment as assessed by 210Pb age dating. In the natural Atikonak lake sediments, on the other hand, T-[Hg] showed no such step-increase but gradually and slowly increased until present. T-[Hg] increases in lake sediments after flooding were also associated with a change in the nature of TOM: biomarker signatures changed to typical signatures of TOM from vegetated terrestrial landscape surrounding the lakes, and indicate a change to TOM that was much less degraded and typical of forest soil organic horizons. We conclude that T-[Hg] increase in the sediments of the two flooded reservoirs was the result of flooding of surrounding forests, whereby mainly surface organic horizons and upper soil horizons were prone to erosion and subsequent re-sedimentation in the reservoirs. The fact that T-[Hg] was still enriched 40 years after reservoir impoundment indicates prolonged response time of lake Hg and sediment loadings after reservoir impoundments

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features.

    Get PDF
    The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom's 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia

    Tropical limestone forest resilience during MIS-2: implications for Pleistocene foraging & modern conservation

    Get PDF
    In this paper we present a multi-proxy study of tropical limestone forest and its utilization by human groups during the major climatic and environmental upheavals of MIS-2 (29-11.7 ka BP). Our data are drawn from new field research within the Tràng An World Heritage property, on the edge of the Red River Delta, northern Vietnam. Key findings from this study include 1) that limestone forest formations were resilient to the large-scale landscape transformation and inundation of the Sunda continent at the end of the last glaciation; 2) that prehistoric human groups were probably present in this habitat through-out MIS-2; and 3) that the forested, almost insular, karst of Tràng An provided foragers with a stable resource-base in a wider changing landscape. These results have implications for our understanding of the prehistoric utilization of karst environments and resonance for conservation efforts in the face of climate and environmental change today

    Highly symmetric POVMs and their informational power

    Get PDF
    We discuss the dependence of the Shannon entropy of normalized finite rank-1 POVMs on the choice of the input state, looking for the states that minimize this quantity. To distinguish the class of measurements where the problem can be solved analytically, we introduce the notion of highly symmetric POVMs and classify them in dimension two (for qubits). In this case we prove that the entropy is minimal, and hence the relative entropy (informational power) is maximal, if and only if the input state is orthogonal to one of the states constituting a POVM. The method used in the proof, employing the Michel theory of critical points for group action, the Hermite interpolation and the structure of invariant polynomials for unitary-antiunitary groups, can also be applied in higher dimensions and for other entropy-like functions. The links between entropy minimization and entropic uncertainty relations, the Wehrl entropy and the quantum dynamical entropy are described.Comment: 40 pages, 3 figure
    corecore