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The cosmological reconstruction scheme for modified F (R) gravity is developed in terms of e-folding
(or, redshift). It is demonstrated how any FRW cosmology may emerge from specific F (R) theory. The
specific examples of well-known cosmological evolution are reconstructed, including �CDM cosmology,
deceleration with transition to phantom superacceleration era which may develop singularity or be
transient. The application of this scheme to viable F (R) gravities unifying inflation with dark energy era
is proposed. The additional reconstruction of such models leads to non-leading gravitational correction
mainly relevant at the early/late universe and helping to pass the cosmological bounds (if necessary). It is
also shown how cosmological reconstruction scheme may be generalized in the presence of scalar field.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Modified gravity approach suggests the gravitational alternative
for unified description of inflation, dark energy and dark matter
without the need to introduce by hands the inflaton and extra
dark components. Moreover, the easy explanation of inflationary
or dark energy phase in such scenario follows: the correspond-
ing era is emerging due to dominance of the specific gravitational
sector in the course of the universe expansion. In other words,
the early-time and late-time acceleration is governed by the uni-
verse expansion within the specific modified gravity theory. Special
interest in this gravitational paradigm for the description of the
universe evolution is related with F (R) gravity (for a general re-
view, see [1]) due to its quite simple structure if compare with
more general modified gravity which includes all curvature invari-
ants as well as non-local terms. Nevertheless, even in frames of
F (R) gravity the background evolution (due to high non-linearity
of the problem) is often non-explicit and/or non-analytic process.
From another side, any realistic modified gravity should pass not
only the local tests but also the observational cosmological bounds.
To comply with cosmological bounds, the reconstruction program
in any modified gravity has been developed [2].
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The cosmological reconstruction of F (R) gravity has been con-
sidered in Refs. [2–5]. It turns out that in most cases this recon-
struction is done in the presence of the auxiliary scalar which may
be excluded at the final step so that any FRW cosmology may be
realized within specific reconstructed F (R) gravity. However, the
weak point of so developed reconstruction scheme is that the final
function F (R) represents usually some polynomial in the posi-
tive/negative powers of scalar curvature. On the same time, the
viable models have strongly non-linear structure.

In the present Letter we develop the new scheme for cosmo-
logical reconstruction of F (R) gravity in terms of e-folding (or,
redshift z) so that there is no need to use more complicated for-
mulation with auxiliary scalar [2,3,5]. Using such technique the
number of examples are presented where F (R) gravity is recon-
structed so that it gives the well-known cosmological evolution:
�CDM epoch, deceleration/acceleration epoch which is equivalent
to presence of phantom and non-phantom matter, late-time accel-
eration with the crossing of phantom-divide line, transient phan-
tom epoch and oscillating universe. It is shown that some general-
ization of such technique for viable F (R) gravity is possible, so that
local tests are usually satisfied. In this way, modified gravity uni-
fying inflation, radiation/matter dominance and dark energy eras
may be further reconstructed in the early or in the late universe
so that the future evolution may be different. This opens the way
to non-linear reconstruction of realistic F (R) gravity. Moreover, it
is demonstrated that cosmological reconstruction of viable modi-
fied gravity may help in the formulation of non-singular models in
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finite-time future. The reconstruction suggests the way to change
some cosmological predictions of the theory in the past or in the
future so that it becomes easier to pass the available observational
data. Finally, we show that our method works also for modified
gravity with scalar theory and any requested cosmology may be
realized within such theory too.

2. Cosmological reconstruction of modified F (R) gravity

Let us demonstrate that any FRW cosmology may be realized in
specific F (R) gravity. The starting action of the F (R) gravity (for
general review, see [1]) is given by

S =
∫

d4x
√−g

(
F (R)

2κ2
+ Lmatter

)
. (1)

The field equation corresponding to the first FRW equation is:

0 = − F (R)

2
+ 3

(
H2 + Ḣ

)
F ′(R)

− 18
(
4H2 Ḣ + H Ḧ

)
F ′′(R) + κ2ρ, (2)

with R = 6Ḣ + 12H2. We now rewrite Eq. (2) by using a new
variable (which is often called e-folding) instead of the cosmo-
logical time t , N = ln a

a0
. The variable N is related with the red-

shift z by e−N = a0
a = 1 + z. Since d

dt = H d
dN and therefore d2

dt2 =
H2 d2

dN2 + H dH
dN

d
dN , one can rewrite (2) by

0 = − F (R)

2
+ 3

(
H2 + H H ′)F ′(R)

− 18
(
4H3 H ′ + H2(H ′)2 + H3 H ′′)F ′′(R) + κ2ρ. (3)

Here H ′ ≡ dH/dN and H ′′ ≡ d2 H/dN2. If the matter energy den-
sity ρ is given by a sum of the fluid densities with constant EoS
parameter wi , we find

ρ =
∑

i

ρi0a−3(1+wi) =
∑

i

ρi0a−3(1+wi)
0 e−3(1+wi)N . (4)

Let the Hubble rate is given in terms of N via the function g(N) as

H = g(N) = g
(− ln(1 + z)

)
. (5)

Then scalar curvature takes the form: R = 6g′(N)g(N) + 12g(N)2,
which could be solved with respect to N as N = N(R). Then by
using (4) and (5), one can rewrite (3) as

0 = −18
(
4g

(
N(R)

)3
g′(N(R)

) + g
(
N(R)

)2
g′(N(R)

)2

+ g
(
N(R)

)3
g′′(N(R)

))d2 F (R)

dR2

+ 3
(

g
(
N(R)

)2 + g′(N(R)
)

g
(
N(R)

))dF (R)

dR
− F (R)

2

+
∑

i

ρi0a−3(1+wi)
0 e−3(1+wi)N(R), (6)

which constitutes a differential equation for F (R), where the vari-
able is scalar curvature R . Instead of g , if we use G(N) ≡ g(N)2 =
H2, the expression (6) could be a little bit simplified:

0 = −9G
(
N(R)

)(
4G ′(N(R)

) + G ′′(N(R)
))d2 F (R)

dR2

+
(

3G
(
N(R)

) + 3

2
G ′(N(R)

))dF (R)

dR

− F (R)

2
+

∑
ρi0a−3(1+wi)

0 e−3(1+wi)N(R). (7)

i

Note that the scalar curvature is given by R = 3G ′(N) + 12G(N).
Hence, when we find F (R) satisfying the differential equation (6)
or (7), such F (R) theory admits the solution (5). Hence, such F (R)

gravity realizes above cosmological solution.
As an example, we reconstruct the F (R) gravity which repro-

duces the �CDM-era but without real matter. In the Einstein grav-
ity, the FRW equation for the �CDM cosmology is given by

3

κ2
H2 = 3

κ2
H2

0 + ρ0a−3 = 3

κ2
H2

0 + ρ0a−3
0 e−3N . (8)

Here H0 and ρ0 are constants. The first term in the r.h.s. corre-
sponds to the cosmological constant and the second term to the
cold dark matter (CDM). The (effective) cosmological constant Λ

in the present universe is given by Λ = 12H2
0. Then one gets

G(N) = H2
0 + κ2

3
ρ0a−3

0 e−3N , (9)

and R = 3G ′(N) + 12G(N) = 12H2
0 + κ2ρ0a−3

0 e−3N , which can be
solved with respect to N as follows,

N = −1

3
ln

(
(R − 12H2

0)

κ2ρ0a−3
0

)
. (10)

Eq. (7) takes the following form:

0 = 3
(

R − 9H2
0

)(
R − 12H2

0

)d2 F (R)

d2 R

−
(

1

2
R − 9H2

0

)
dF (R)

dR
− 1

2
F (R). (11)

By changing the variable from R to x by x = R
3H2

0
− 3, Eq. (11)

reduces to the hypergeometric differential equation:

0 = x(1 − x)
d2 F

dx2

+ (
γ − (α + β + 1)x

)dF

dx
− αβ F . (12)

Here

γ = −1

2
, α + β = −1

6
, αβ = −1

6
. (13)

Solution of (12) is given by Gauss’ hypergeometric function
F (α,β,γ ; x):

F (x) = A F (α,β,γ ; x)

+ Bx1−γ F (α − γ + 1, β − γ + 1,2 − γ ; x). (14)

Here A and B are constants. Thus, we demonstrated that modified
F (R) gravity may describe the �CDM epoch without the need to
introduce the effective cosmological constant.

As an another example, we reconstruct F (R) gravity reproduc-
ing the system with non-phantom matter and phantom matter in
the Einstein gravity, whose FRW equation is given by

3

κ2
H2 = ρqa−c + ρpac. (15)

Here ρq , ρp , and c are positive constants. When a is small as in the
early universe, the first term in the r.h.s. dominates and it behaves
as the universe described by the Einstein gravity with a matter
whose EoS parameter is w = −1 + c/3 > −1, that is, non-phantom
like. On the other hand, when a is large as in the late universe,
the second term dominates and behaves as a phantom-like matter
with w = −1 − c/3 < −1. Then since G(N) ≡ g(N)2 = H2, we find
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G = Gqe−cN + G pecN ,

Gq ≡ κ2

3
ρqa−c

0 , G p ≡ κ2

3
ρpac

0. (16)

Then since R = 3G ′(N) + 12G(N),

ecN = R ± √
R2 − 4(144 − 9c2)

2(12 + 3c)
, (17)

when c �= 4 and

ecN = R

24G p
, (18)

when c = 4. In the following, just for simplicity, we consider c = 4
case. In the case, the non-phantom matter corresponding to the
first term in the r.h.s. of (15) could be radiation with w = 1/3.
Then Eq. (7) in this case is given by

0 = −6

(
24G p Gq

R
+ R

24

)
R

d2 F (R)

dR2

+ 9

2

(
−24G p Gq

R
+ R

24

)
dF (R)

dR
− F (R)

2
. (19)

By changing variable R to x by R2 = −576G p Gqx, we can rewrite
Eq. (19) as

0 = (1 − x)x
d2 F

dx2
+

(
3

4
+ x

4

)
dF

dx
− F

2
, (20)

whose solutions are again given by Gauss’ hypergeometric function
(14) with

γ = 3

4
, α + β + 1 = −1

4
, αβ = 1

2
. (21)

Let us now study a model where the dominant component is
phantom-like one. Such kind of system can be easily expressed
in the standard General Relativity when a phantom fluid is con-
sidered, where the FRW equation reads H2(t) = κ2

3 ρph. Here the
subscript ph denotes the phantom nature of the fluid. As the EoS
for the fluid is given by pph = wphρph with wph < −1, by using
the conservation equation ρ̇ph + 3H(1 + wph)ρph = 0, the solution

for the FRW equation H2(t) = κ2

3 ρph is well known, and it yields

a(t) = a0(ts − t)−H0 , where a0 is a constant, H0 = − 1
3(1+wph)

and ts

is the so-called Rip time. Then, the solution describes the Universe
that ends at the Big Rip singularity in the time ts . The same be-
havior can be achieved in F (R) theory with no need to introduce
a phantom fluid. Eq. (7) can be solved and the expression for the
F (R) that reproduces the solution is reconstructed. The expression
for the Hubble parameter as a function of the number of e-folds is
given by H2(N) = H2

0e2N/H0 . Then, Eq. (7), with no matter contri-
bution, takes the form:

R2 d2 F (R)

dR2
+ AR

dF (R)

dR
+ B F (R) = 0, (22)

where A = −H0(1 + H0) and B = (1+2H0)
2 . This equation is the

well-known Euler equation whose solution yields

F (R) = C1 Rm+ + C2 Rm− ,

where m± = 1 − A ± √
(A − 1)2 − 4B

2
. (23)

Thus, the phantom dark energy cosmology a(t) = a0(ts − t)−H0 can
be also obtained in the frame of F (R) theory and no phantom fluid
is needed.
We can consider now the model where the transition to the
phantom epoch occurs. It has been pointed out that F (R) could
behave as an effective cosmological constant, such that its current
observed value is well reproduced. One can reconstruct the model
where late-time acceleration is reproduced by an effective cos-
mological constant and then the phantom barrier is crossed (see
Ref. [5] for such reconstruction in the presence of auxiliary scalar).
Such transition, which may take place at current time, could be
achieved in F (R) gravity. The solution considered can be expressed
as:

H2 = H1

(
a

a0

)m

+ H0 = H1emN + H0, (24)

where H1, H0 and α are positive constants. This solution can be
constructed in GR when a cosmological constant and a phantom
fluid are included. In the present case, the solution (24) can be
achieved just by an F (R) function, such that the transition from
non-phantom to phantom epoch is reproduced. Scalar curvature
can be written in terms of the number of e-folds again. Then,
Eq. (7) takes the form:

x(1 − x)F ′′(x) +
[

x

(
−6 + m

6m

)
− 1

3m

]
F ′(x)

− m + 4

m
F (x) = 0, (25)

where x = 1
3H0(m+4)

(12H0 − R). Eq. (25) reduces to the hyperge-
ometric differential equation (14), so the solution is given, as in
some of the examples studied above, by the Gauss’ hypergeomet-
ric function (15), whose parameters for this case are given by

γ = − 1

3m
, α + β = −3m + 2

2m
, αβ = m + 4

2m
, (26)

and the obtained F (R) gravity produces the FRW cosmology with
the late-time crossing of the phantom barrier in the universe evo-
lution.

Another example with transient phantom behavior in F (R)

gravity can be achieved by following the same reconstruction de-
scribed above. In this case, we consider the following Hubble pa-
rameter:

H2(N) = H0 ln

(
a

a0

)
+ H1 = H0N + H1, (27)

where H0 and H1 are positive constants. For this model, we have
a contribution of an effective cosmological constant, and a term
that will produce a superaccelerating phase although no future
singularity will take place (compare with earlier model [6] with
transient phantom era). The solution for the model (27) can be ex-
pressed as a function of time

H(t) = a0 H0

2
(t − t0). (28)

Then, the Universe is superaccelerating, but as it can be seen from
(28), in spite of its phantom nature, no future singularity occurs.
The differential reconstruction equation can be obtained as

a2x
d2 F (x)

dx
+ (a1x + b1)

dF (x)

dx
+ b0 F (x) = 0, (29)

where we have performed a variable change x = H0N + H1, and

the constant parameters are a2 = H2
0, a1 = −H0, b1 = − H2

0
2 and

b0 = 2H0. Eq. (29) is a kind of the degenerate hypergeomet-
ric equation, whose solutions are given by the Kummers series
K (a,b; x):

F (R) = K

(
−2,− 1 ; R − 3H0

)
. (30)
2H0 12
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Hence, such F (R) gravity has cosmological solution with the tran-
sient phantom behavior which does not evolve to future singular-
ity.

Let us now consider the case where a future contracting Uni-
verse is reconstructed in this kind of models. We study a model
where the universe is currently accelerating, then the future con-
traction of the Universe occurs. The following solution for the Hub-
ble parameter is considered,

H(t) = 2H1(t0 − t), (31)

where H1 and t0 are positive constants. For this example, the Hub-
ble parameter (31) turns negative for t > t0, when the Universe
starts to contract itself, while for t � t0, the cosmology is typi-
cally �CDM one. Using notations H̃0 = 4H1t2

0 and H̃1 = 4H1 and
repeating the above calculation, one gets:

F (R) = K

(
−8H̃1,− H̃1

8
; 12H̃0 − 3H̃1 − R

12H̃1

)
. (32)

Hence, the oscillating cosmology (31) that describes the asymptot-
ically contracting Universe with a current accelerated epoch can be
found in specific F (R) gravity.

Thus, we explicitly demonstrated that F (R) gravity reconstruc-
tion is possible for any cosmology under consideration without the
need to introduce the auxiliary scalar. However, the obtained mod-
ified gravity has typically polynomial structure with terms which
contain positive and negative powers of curvature as in the first
such model unifying the early-time inflation and late-time ac-
celeration [7]. As a rule such models do not pass all the local
gravitational tests. Some generalization of above cosmological re-
construction is necessary.

3. Cosmological reconstruction of viable F (R) gravity

In this section, we show how the cosmological reconstruction
may be applied to viable modified gravity which passes the local
gravitational tests. In this way, the non-linear structure of modi-
fied F (R) gravity may be accounted for, unlike the previous section
where only polynomial F (R) structures may be reconstructed. Let
us write F (R) (1) in the following form: F (R) = F0(R) + F1(R).
Here we choose F0(R) as a known function like that of GR or one
of viable F (R) models introduced in [8], or viable F (R) theories
unifying inflation with dark energy [9,10], for example

F0(R) = 1

2κ2

(
R − (R − R0)

2n+1 + R2n+1
0

f0 + f1{(R − R0)2n+1 + R2n+1
0 }

)
. (33)

Using the procedure similar to the one of second section, one
gets the reconstruction equation corresponding to (7)

0 = −9G
(
N(R)

)(
4G ′(N(R)

) + G ′′(N(R)
))d2 F0(R)

dR2

+
(

3G
(
N(R)

) + 3

2
G ′(N(R)

))dF0(R)

dR
− F0(R)

2

− 9G
(
N(R)

)(
4G ′(N(R)

) + G ′′(N(R)
))d2 F1(R)

dR2

+
(

3G
(
N(R)

) + 3

2
G ′(N(R)

))dF1(R)

dR

− F1(R)

2
+

∑
i

ρi0a−3(1+wi)
0 e−3(1+wi)N(R). (34)

The above equation can be regarded as a differential equation for
F1(R). For a given G(N) or g(N) (5), if one can solve (7) as F (R) =
F̂ (R), we also find the solution of (34) as F1(R) = F̂ (R) − F0(R).
For example, for G(N) (9), by using (14), we find

F1(R) = A F (α,β,γ ; x)

+ Bx1−γ F (α − γ + 1, β − γ + 1,2 − γ ; x)

− F0(R). (35)

Here α, β , γ , and x are given by x = R
3H2

0
−3 and (13). Using F0(R)

(33) one has

F1(R) = A F (α,β,γ ; x)

+ Bx1−γ F (α − γ + 1, β − γ + 1,2 − γ ; x)

− 1

2κ2

(
R − (R − R0)

2n+1 + R2n+1
0

f0 + f1{(R − R0)2n+1 + R2n+1
0 }

)
, (36)

which describes the asymptotically de Sitter universe. Instead of
x = R

3H2
0

− 3 and (13), if we choose α, β , γ , and x as R2 =
−576G p Gqx and in (21), F1(R) (36) shows the asymptotically
phantom universe behavior, where H diverges in future.

One may start from F0(R) given by hypergeometric function
(14) with x = 1

3H0(m+4)
(12H0 − R) and (26). In such a model, there

occurs Big Rip singularity. Let F̃ (R) be F (R) again given by hyper-
geometric function (14) with x = R

3H2
0

− 3 and (13):

F̃ (R) = Ã F (α̃, β̃, γ̃ ; x̃)

+ B̃ x̃1−γ̃ F (α̃ − γ̃ + 1, β̃ − γ̃ + 1,2 − γ̃ ; x̃),

x̃ = R

3H2
0

− 3, γ̃ = −1

2
,

α̃ + β̃ = −1

6
, α̃β̃ = −1

6
. (37)

If we choose F (R) = F̃ (R), the �CDM model emerges. Then choos-
ing F1(R) = F̃ (R) − F0(R), the Big Rip singularity, which occurs in
F0(R) model, does not appear and the universe becomes asymptot-
ically de Sitter space. Hence, the reconstruction method suggests
the way to create the non-singular modified gravity models [5,6,
11]. Of course, it should be checked that reconstruction term is
not large (or it affects only the very early-time/late-time universe)
so that the theory passes the local tests as it was before the adding
of correction term.

Gauss’ hypergeometric function F (α,β,γ ; x) is defined by

F (α,β,γ ; x) = Γ (γ )

Γ (α)Γ (β)

∞∑
n=0

Γ (α + n)Γ (β + n)

Γ (γ + n)n! zn. (38)

Since

α0, β0 = −3m − 2 ± √
m2 − 20m + 4

4m
< 0,

α̃, β̃ = −1 ± 5

12
, (39)

when R is large, F1(R) behaves as F1(R) ∼ R(3m+2+
√

m2−20m+4)/4m .
In spite of the above expression, since the total F (R) = F0(R) +
F1(R) is given by F̃ (R) (37), the Big Rip type singularity does not
occur. The asymptotic behavior of F1(R) cancels the large R be-
havior in F0(R) suggesting the way to present the non-singular
cosmological evolution.

We now consider the case that H and therefore G oscillate as

G(N) = G0 + G1 sin

(
N

)
, (40)
N0
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with positive constants G0, G1, and N0. Let the amplitude of the
oscillation is small but the frequency is large:

G0 
 G1

N0
, N0 
 1. (41)

When G1 = 0, we obtain de Sitter space, where the scalar curva-
ture is a constant R = 12G0. Writing G(N) as

G = R

6
− G0, (42)

by using (7), one arrives at general relativity:

F (R) = c0(R − 6G0). (43)

Instead of (42), using an arbitrary function F̃ , if we write

G = G0 + F̃ (R) − F̃ (12G0), (44)

we obtain a general F (R) gravity, which admits de Sitter space so-
lution. When G1 �= 0, under the assumption (41), one may identify
F (R) in (43) with F0(R). We now write G(N) and the scalar cur-
vature R as

G(N) = R

6
− G0 + G1

N0
g(N), R = 12G0 + 3G1

N0
r(N), (45)

with adequate functions g(N) and r(N). Then since R = 6g′(N)g(N)

+ 12g(N)2 and from (41), we find

g(N) = −
(

N0 sin
N

N0
+ 1

2
cos

N

N0

)
,

r(N) = 4N0 sin
N

N0
+ cos

N

N0
. (46)

By assuming

F (R) = c0

(
R − 6G0 + G2

1

N3
0

f (R)

)
, (47)

and identifying

F1(R) = c0G2
1

N3
0

f (R), (48)

from (34), one obtains

0 = G0
df

dr
− sin

(
N

N0

)
+ o

(
G1

N0
, N0

)
, (49)

which can be solved as

f (R) = − 1

2G0

(
cos−1 r ∓ r

√
1 − r2

)
. (50)

Then at least perturbatively, one can construct a model which ex-
hibits the oscillation of H .

Before going further, let us find F (R) equivalent to the Ein-
stein gravity with a perfect fluid with a constant EoS parameter w ,
where H behaves as

3

κ2
H2 = ρ0e−3(w+1). (51)

Then

G(N) = κ2ρ0

3
e−3(w+1),

R(N) = (1 − 3w)κ2ρ0e−3(w+1), (52)

which could be solved as

N = − 1
ln

R
2

. (53)

3(w + 1) (1 − 3w)κ ρ0
Therefore Eq. (7) has the following form:

0 = 3(1 + w)

1 − 3w
R2 d2 F (R)

dR2
− 1 + 3w

2(1 − 3w)
R

dF (R)

dR
− F (R)

2
, (54)

whose solutions are given by a sum of powers of R

F (R) = F+Rn+ + F−Rn− . (55)

Here F± are constants of integration and n± are given by

n± = 1

2

{
7 + 9w

6(1 + w)
±

√(
7 + 9w

6(1 + w)

)2

+ 2(1 − 3w)

3(1 + w)

}
. (56)

If w > −1/3, the universe is decelerating but if −1 < w < −1/3,
the universe is accelerating as in the quintessence scenario.

By using the solution (14), which mimics �CDM model, and
the solution (55), one may consider the following model:

F (x) = {
A F (α,β,γ ; x)

+ Bx1−γ F (α − γ + 1, β − γ + 1,2 − γ ; x)
}

× e
λ( R

R1
− R1

R )

e
λ( R

R1
− R1

R ) + e
−λ( R

R1
− R1

R )

+ F+Rn+ + F−Rn− . (57)

Here R1 is a constant which is sufficiently small compared with
the curvature R0 in the present universe. On the other hand, we
choose a positive constant λ to be large enough. We also choose
F± to be small enough so that only the first term dominates when

R 
 R1. Note that the factor e
λ( R

R1
− R1

R )

e
λ( R

R1
− R1

R )+e
−λ( R

R1
− R1

R )
behaves as step

function when λ is large:

lim
λ→+∞

e
λ( R

R1
− R1

R )

e
λ( R

R1
− R1

R ) + e
−λ( R

R1
− R1

R )
= θ(R − R1)

≡
{

1 when R > R1,

0 when R < R1.
(58)

Then in the early universe and in the present universe, only the
first term dominates and the �CDM universe could be reproduced.

In the future universe where R � R1, the factor e
λ( R

R1
−1)

e
λ( R

R1
−1)+e

−λ( R
R1

−1)

decreases very rapidly and the second terms in (57) dominate.
Then if w > −1/3, the universe decelerates again but if −1 < w <

−1/3, the universe will be accelerating as in the quintessence sce-
nario.

Thus, we explicitly demonstrated that the viable F (R) gravity
may be reconstructed so that any requested cosmology may be re-
alized after the reconstruction. Moreover, one can use the viable
F (R) gravity unifying the early-time inflation with late-time accel-
eration (and manifesting the radiation/matter dominance era be-
tween accelerations) and passing local tests in such a scheme. The
(small) correction term F1(R) can be always constructed so that it
slightly corrects (if necessary) the cosmological bounds being rel-
evant only at the very early/late universe. This scenario opens the
way to extremely realistic description of the universe evolution in
F (R) gravity consistent with local tests and cosmological bounds.

4. Reconstruction of modified gravity with extra scalar

We now consider the reconstruction of F (R)-gravity coupled
with a scalar field, whose action is given by

S =
∫

d4x
√−g

(
F (R)

2
− 1

∂μφ∂μφ − V (φ) + Lmatter

)
. (59)
2κ 2
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(For some cosmological solutions in such theory, see [13].) Let us
redefine the scalar field as φ = φ(ϕ),

S =
∫

d4x
√−g

(
F (R)

2κ2
− ω(ϕ)

2
∂μϕ∂μϕ

− Ṽ (ϕ) + Lmatter

)
. (60)

Here

ω(ϕ) ≡
(

dφ(ϕ)

dϕ

)2

, Ṽ (ϕ) ≡ V
(
φ(ϕ)

)
. (61)

If φ only depends on the time-coordinate t or e-folding N , we may
choose ϕ = t or ϕ = N .

Then the equations corresponding to the first and second FRW
equations have the following form

0 = − F (R)

2
+ 3

(
H2 + H H ′)F ′(R)

− 18
(
4H3 H ′ + H2(H ′)2 + H3 H ′′)F ′′(R)

+ κ2
(

H2ω(ϕ)(ϕ′)2

2
+ Ṽ (ϕ)

)

+
∑

i

κ2ρi0a−3(1+wi)
0 e−3(1+wi)N , (62)

0 = F (R)

2
− (

3H2 + H H ′)F ′(R)

+ 6
(
16H3 H ′ − 4H2(H ′)2 − H(H ′)3

− 4H2 H ′H ′′ − H3 H ′′′)F ′′(R)

− 36
(
4H3 H ′ + H2(H ′)2 + H3 H ′′)

× (
(H ′)2 + H H ′′ + 4H H ′)F ′′′(R)

+ κ2
(

H2ω(ϕ)(ϕ′)2

2
− Ṽ (ϕ)

)

+
∑

i

κ2 wiρi0a−3(1+wi)
0 e−3(1+wi)N , (63)

which can be rewritten as

κ2ω(ϕ)(ϕ′)2 =
{

−2H H ′ F ′(R) + 6
(−4H3 H ′ + 7H2(H ′)2

+ H(H ′)3 + 4H2 H ′H ′′

+ H3 H ′′′ + 3H3 H ′′)F ′′(R)

− 36
(
4H3 H ′ + H2(H ′)2 + H3 H ′′)

× (
(H ′)2 + H H ′′ + 4H H ′)F ′′′(R)

+
∑

i

κ2(1 + wi)ρi0a−3(1+wi)
0 e−3(1+wi)N

}
1

H2
,

(64)

2κ2 Ṽ (ϕ) = F (R) + (−6H2 − 4H H ′)F ′(R)

+ 6
(
28H3 H ′ − H2(H ′)2 − H(H ′)3

− 4H2 H ′H ′′ + H3 H ′′′ − 3H3 H ′′)F ′′(R)

+ 36
(
4H3 H ′ + H2(H ′)2 + H3 H ′′)

× (
(H ′)2 + H H ′′ + 4H H ′)F ′′′(R)

+
∑

κ2(1 − wi)ρi0a−3(1+wi)
0 e−3(1+wi)N . (65)
i

Then if we consider the model given by an adequate function K =
K (ϕ),

κ2ω(ϕ) =
{

−2K (ϕ)K ′(ϕ)F ′(6K (ϕ)K ′(ϕ) + 12K (ϕ)2)
+ 6

(−4K (ϕ)3 K ′(ϕ) + 7K (ϕ)2 K ′(ϕ)2

+ K (ϕ)K ′(ϕ)3 + 4K (ϕ)2 K ′(ϕ)K ′′(ϕ) + K (ϕ)3 K ′′′(ϕ)

+ 3K (ϕ)3 K ′′(ϕ)
)

F ′′(6K (ϕ)K ′(ϕ) + 12K (ϕ)2)
− 36

(
4K (ϕ)3 K ′(ϕ) + K (ϕ)2 K ′(ϕ)2 + K (ϕ)3 K ′′(ϕ)

)
× (

K ′(ϕ)2 + K (ϕ)K ′′(ϕ) + 4K (ϕ)K ′(ϕ)
)

× F ′′′(6K (ϕ)K ′(ϕ) + 12K (ϕ)2)
+

∑
i

κ2(1 + wi)ρi0a−3(1+wi)
0 e−3(1+wi)ϕ

}
1

K (ϕ)2
,

(66)

2κ2 Ṽ (ϕ) = F
(
6K (ϕ)K ′(ϕ) + 12K (ϕ)2)

+ (−6K (ϕ)2 − 4K (ϕ)K ′(ϕ)
)

× F ′(6K (ϕ)K ′(ϕ) + 12K (ϕ)2)
+ 6

(
28K (ϕ)3 K ′(ϕ) − K (ϕ)2 K ′(ϕ)2 − K (ϕ)K ′(ϕ)3

− 4K (ϕ)2 K ′(ϕ)K ′′(ϕ) + K (ϕ)3 K ′′′(ϕ)

− 3K (ϕ)3 K ′′(ϕ)
)

F ′′(6K (ϕ)K ′(ϕ) + 12K (ϕ)2)
+ 36

(
4K (ϕ)3 K ′(ϕ) + K (ϕ)2 K ′(ϕ)2 + K (ϕ)3 K ′′(ϕ)

)
× (

K ′(ϕ)2 + K (ϕ)K ′′(ϕ) + 4K (ϕ)K ′(ϕ)
)

× F ′′′(6K (ϕ)K ′(ϕ) + 12K (ϕ)2)
+

∑
i

κ2(1 − wi)ρi0a−3(1+wi)
0 e−3(1+wi)ϕ, (67)

we find a solution which is given by

H(N) = K (N), ϕ = N. (68)

Hence, it is demonstrated that reconstruction can be extended to
the case when modified gravity couples with some scalar field.
Note that extra scalar may be necessary in the situation when
some of cosmological bounds (for instance, cosmological pertur-
bations theory which is extremely complicated in F (R) gravity, for
a review, see [12]) cannot be passed within only modified gravity.
So far, this is not the case and modified gravity which passes local
tests and cosmological bounds is available [8–10].

5. Discussion

In summary, we developed general scheme for cosmological re-
construction of modified F (R) gravity in terms of e-folding (or red-
shift) without use of auxiliary scalar in intermediate calculations.
Using this method, it is possible to construct the specific modified
gravity which contains any requested FRW cosmology. The num-
ber of F (R) gravity examples is found where the following back-
ground evolution may be realized: �CDM epoch, deceleration with
subsequent transition to effective phantom superacceleration lead-
ing to Big Rip singularity, deceleration with transition to transient
phantom phase without future singularity, oscillating universe. It
is important that all these cosmologies may be realized only by
modified gravity without use of any dark components (cosmologi-
cal constant, phantom, quintessence, etc.).
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It is shown that our method may be applied to viable F (R)

gravities which pass local tests and unify the early-time inflation
with late-time acceleration. In this case, the additional reconstruc-
tion may be made so that correction term is not large and it
is relevant only in the very early/very late universe. Hence, the
purpose of such additional reconstruction is only to improve the
cosmological predictions if the original theory does not pass cor-
rectly the precise observational cosmological bounds. For instance,
in this way it is possible to formulate the modified gravity without
finite-time future singularity. It is also demonstrated that the re-
construction scheme may be generalized for the case of modified
gravity with scalar field.

The present reconstruction formulation shows that even if spe-
cific realistic modified gravity does not pass correctly some cosmo-
logical bounds (for instance, does not lead to correct cosmological
perturbations structure) it may be improved with eventually de-
sirable result. Hence, the successful development of such method
adds very strong argument in favour of unified gravitational alter-
native for inflation, dark energy and dark matter.
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