164 research outputs found

    Analysis of dental care of children receiving comprehensive care under general anaesthesia at a teaching hospital in England

    Get PDF
    Objectives: This study aimed to analyse the characteristics of comprehensive dental care provided under general anaesthesia (CDGA) and to review the additional treatment required by children over the 6 years subsequent to CDGA. Method: Information collected from hospital records for the 6-year period following the first CDGA included the types of dental treatment performed at CDGA, the return rates for follow-up appointments, further treatment required subsequent to CDGA and the types of dental treatment performed at repeat DGA. Results: The study population consisted of 263 children, of whom 129 had a significant medical history, with mean age of 6.7 years. The results revealed that the waiting time for CDGA was significantly shorter in children who had a significant medical history, with 49 % being admitted for CDGA within 3 months of pre-GA assessment, as compared to 29 % of healthy children. 67 % of children had follow-up care recorded, with a slightly higher proportion of children with significant medical history returning for follow-up [70 % (90/129)] compared with 65 % (87/134) of healthy children. Re-treatment rates were 34 % (88/263), the majority of cases being treated under local analgesia (42/88). 34 of 263 children had repeat DGA (12.9 %). Of these 71 % (24/34) were children with significant medical history. The mean age at repeat DGA was 9 years. In 25 of 34 children (74 %), repeat DGA was due to trauma, oral pathology, supernumerary removal, hypomineralized teeth or new caries of previously sound or un-erupted teeth at CDGA. The ratio of extraction over restoration (excluding fissure sealants) performed at repeat DGA was 2.8, compared with the ratio of 1.3 in the initial CDGA. Conclusions: There was a higher ratio of extraction over restorations at the repeat DGA. This suggests that the prescribed treatments at repeat DGA were more aggressive as compared to the initial CDGA in 1997. The majority of the treatment required at repeat DGA was to treat new disease

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    The impact on staff of working with personality disordered offenders: A systematic review

    Get PDF
    © 2015 Freestone et al. Background: Personality disordered offenders (PDOs) are generally considered difficult to manage and to have a negative impact on staff working with them. Aims: This study aimed to provide an overview of studies examining the impact on staff of working with PDOs, identify impact areas associated with working with PDOs, identify gaps in existing research,and direct future research efforts. Methods: The authors conducted a systematic review of the English-language literature from 1964-2014 across 20 databases in the medical and social sciences. Results: 27 papers were included in the review. Studies identified negative impacts upon staff including: negative attitudes, burnout, stress, negative counter-transferential experiences; two studies found positive impacts of job excitement and satisfaction, and the evidence related to perceived risk of violence from PDOs was equivocal. Studies demonstrated considerable heterogeneity and meta-analysis was not possible. The overall level of identified evidence was low: 23 studies (85%) were descriptive only, and only one adequately powered cohort study was found. Conclusions: The review identified a significant amount of descriptive literature, but only one cohort study and no trials or previous systematic reviews of literatures. Clinicians and managers working with PDOs should be aware of the potential impacts identified, but there is an urgent need for further research focusing on the robust evaluation of interventions to minimise harm to staff working with offenders who suffer from personality disorder Copyright

    Genetic variation in the estrogen metabolic pathway and mammographic density as an intermediate phenotype of breast cancer

    Get PDF
    Introduction: Several studies have examined the effect of genetic variants in genes involved in the estrogen metabolic pathway on mammographic density, but the number of loci studied and the sample sizes evaluated have been small and pathways have not been evaluated comprehensively. In this study, we evaluate the association between mammographic density and genetic variants of the estrogen metabolic pathway. Methods: A total of 239 SNPs in 34 estrogen metabolic genes were studied in 1,731 Swedish women who participated in a breast cancer case-control study, of which 891 were cases and 840 were controls. Film mammograms of the medio-lateral oblique view were digitalized and the software Cumulus was used for computer-assisted semi-automated thresholding of mammographic density. Generalized linear models controlling for possible confounders were used to evaluate the effects of SNPs on mammographic density. Results found to be nominally significant were examined in two independent populations. The admixture maximum likelihood-based global test was performed to evaluate the cumulative effect from multiple SNPs within the whole metabolic pathway and three subpathways for androgen synthesis, androgen-to-estrogen conversion and estrogen removal. Results: Genetic variants of genes involved in estrogen metabolism exhibited no appreciable effect on mammographic density. None of the nominally significant findings were validated. In addition, global analyses on the overall estrogen metabolic pathway and its subpathways did not yield statistically significant results. Conclusions: Overall, there is no conclusive evidence that genetic variants in genes involved in the estrogen metabolic pathway are associated with mammographic density in postmenopausal women

    Inflammatory bowel disease: past, present, and future

    Get PDF
    Crohn’s disease and ulcerative colitis, collectively known as the inflammatory bowel diseases (IBD), are largely diseases of the twentieth century, and are associated with the rise of modern, Westernized industrial society. Although the causes of these diseases remain incompletely understood, the prevailing model is that the intestinal flora drives an unmitigated intestinal immune response and inflammation in the genetically susceptible host. A review of the past and present of these diseases shows that detailed description preceded more fundamental elucidation of the disease processes. Working out the details of disease pathogenesis, in turn, has yielded dividends in more focused and effective therapy for IBD. This article highlights the key descriptions of the past, and the pivotal findings of current studies in disease pathogenesis and its connection to medical therapy. Future directions in the IBD will likely explicate the inhomogeneous causes of these diseases, with implications for individualized therapy
    corecore