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SUMMARY  13 

Height is a highly heritable, classic polygenic trait with ~700 common associated variants 14 

identified so far through genome-wide association studies. Here, we report 83 new height-15 

associated coding variants with lower minor allele frequencies (range of 0.1-4.8%) and effects of 16 

up to 2 cm/allele (e.g. in IHH, STC2, AR and CRISPLD2), >10 times the average effect of 17 

common variants. In functional follow-up studies, rare height-increasing variants of STC2 (+1-2 18 

cm/allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in 19 

vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-20 

associated variants overlap genes mutated in monogenic growth disorders and highlight new 21 

biological candidates (e.g. ADAMTS3, IL11RA, NOX4) and pathways (e.g. 22 

proteoglycan/glycosaminoglycan synthesis) involved in growth. Our results demonstrate that 23 

sufficiently large sample sizes can uncover rare and low-frequency variants of moderate to large 24 

effect associated with polygenic human phenotypes, and that these variants implicate relevant 25 

genes and pathways.  26 

 27 

  28 
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INTRODUCTION 29 

Human height is a highly heritable, polygenic trait1,2. The contribution of common DNA 30 

sequence variation to inter-individual differences in adult height has been systematically 31 

evaluated through genome-wide association studies (GWAS). This approach has thus far 32 

identified 697 independent variants located within 423 loci that together explain ~20% of the 33 

heritability of height3. As is typical of complex traits and diseases, most of the height alleles 34 

discovered so far are common (minor allele frequency (MAF) >5%) and are mainly located 35 

outside coding regions, complicating the identification of the relevant genes or functional 36 

variants. Identifying coding variants associated with a complex trait in new or known loci has the 37 

potential to pinpoint causal genes. Furthermore, the extent to which rare (MAF <1%) and low-38 

frequency (1%< MAF ≤ 5%) coding variants also influence complex traits and diseases remains 39 

an open question. Many recent DNA sequencing studies have identified only few such variants4-40 

8, but this limited success could be due to their modest sample size9. Some studies have 41 

suggested that common sequence variants may explain the majority of the heritable variation in 42 

adult height10, making it timely to assess whether and to what extent rare and low-frequency 43 

coding variation contributes to the genetic landscape of this model polygenic trait.  44 

 45 

In this study, we used an ExomeChip11 to test the association between 241,453 variants (83% 46 

coding with MAF ≤5%) and adult height variation in 711,418 individuals (discovery and 47 

validation sample sizes are 458,927 and 252,491, respectively). The main goals of our project 48 

were to determine whether rare and low-frequency coding variants influence the architecture of a 49 

model complex human trait, such as adult height, and to discover and characterize new genes and 50 

biological pathways implicated in human growth. 51 
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RESULTS 52 

32 rare and 51 low-frequency coding variants associated with adult height 53 

We conducted single-variant meta-analyses in a discovery sample of 458,927 individuals, of 54 

whom 381,625 were of European ancestry. We validated our association results in an 55 

independent set of 252,491 participants. We first performed standard single-variant association 56 

analyses; technical details of the discovery and validation steps are in the Online Methods 57 

(Supplementary Figs 1-6, Supplementary Tables 1-11). In total, we found 606 independent 58 

ExomeChip variants at array-wide significance (P<2x10-7), including 252 non-synonymous or 59 

splice site variants (Online Methods and Supplementary Table 11). Focusing on non-60 

synonymous or splice site variants with MAF <5%, our single-variant analyses identified 32 rare 61 

and 51 low-frequency height-associated variants (Tables 1-2). To date, these 83 height variants 62 

(MAF range 0.1-4.8%) represent the largest set of validated rare and low-frequency coding 63 

variants associated with any complex human trait or disease. Among these 83 variants, there are 64 

81 missense, one nonsense (in CCND3), and one essential acceptor splice site (in ARMC5) 65 

variants.  66 

 67 

We observed a strong inverse relationship between MAF and effect size that is consistent with 68 

our statistical power to discover genetic associations (Fig. 1). The largest effect sizes were 69 

observed for four rare missense variants, located in the androgen receptor gene AR 70 

(rs137852591, MAF=0.21%, Pcombined=2.7x10-14 under recessive model), in CRISPLD2 71 

(rs148934412, MAF=0.08%, Pcombined=2.4x10-20), in IHH (rs142036701, MAF=0.08%, 72 

Pcombined=1.9x10-23), and in STC2 (rs148833559, MAF=0.1%, Pcombined=1.2x10-30). Carriers of the 73 

rare STC2 missense variant are ~2.1 cm taller than non-carriers, whereas carriers of the 74 

remaining three variants (or hemizygous men that carry the X-linked AR-rs137852591 rare 75 



 5

allele) are ~2 cm shorter than non-carriers. In comparison, the mean effect size of common 76 

height alleles is ten times smaller in the same dataset. Across all 83 rare and low-frequency 77 

coding variants, the minor alleles were evenly distributed between height-increasing and -78 

decreasing effects (48% vs. 52%, respectively) (Fig 1. and Tables 1-2).  79 

 80 

Coding variants in new and known height loci, and heritability explained 81 

As expected, many of the height-associated variants in this ExomeChip effort are located near 82 

common variants previously associated with height. Of the 83 rare and low-frequency coding 83 

variants, 49 fell within 1 Mb of a known height signal, but all were found to be independent after 84 

conditional analysis using the July 2015 release of the imputed UK Biobank dataset (which 85 

contains individual-level genotype data for both ExomeChip and previously associated common 86 

height variants); the remaining 34 define new loci. In addition, we found a further 85 common 87 

variants and one low-frequency synonymous variant (in ACHE) that define novel loci.  Thus, our 88 

study identified a total of 120 new height loci, plus 49 additional independent signals from rare 89 

and low-frequency coding variants at known loci (Supplementary Table 11). Because the 90 

sample size of the UK Biobank is smaller than our discovery sample size (120,084 vs. 458,927, 91 

respectively), we sought to validate the UK Biobank conditional results using an orthogonal 92 

imputation-based methodology implemented in the full discovery set (Online Methods). As 93 

shown in Supplementary Fig. 7, both analytical frameworks produced largely compatible 94 

results.   95 

 96 

We used the UK Biobank dataset to estimate the contribution of the new height variants to 97 

heritability, which is h2~80% for adult height2. In combination, the 83 rare and low-frequency 98 
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variants explained 1.7% of the heritability of height. The newly identified novel common 99 

variants accounted for another 2.4%, and all independent variants, known and unknown, together 100 

explained 27.4% of heritability. By comparison, the 697 known height SNPs explain 23.3% of 101 

height heritability in the same dataset. We observed a modest yet significant positive trend 102 

between MAF and heritability explained per variant (P=0.012, Supplementary Fig. 8), with 103 

each common variant explaining slightly more heritability than rare or low-frequency variants 104 

(0.029% vs. 0.021%, Supplementary Fig. 8). 105 

 106 

Gene-based association results 107 

To increase power to find rare or low-frequency coding variants associated with height, we 108 

performed gene-based analyses (Online Methods and Supplementary Tables 12-14). In 109 

European-ancestry individuals, the SKAT12 test (variants with MAF <5% annotated as nonsense, 110 

stop-loss, splice site, or damaging missense) identified 99 genes with >1 variant and PSKAT 111 

<2x10-6 (Supplementary Table 13). These 99 genes are enriched for those involved in 112 

syndromes of abnormal skeletal growth (previously identified from the Online Mendelian 113 

Inheritance in Man (OMIM) database), located near height SNPs identified by GWAS, or 114 

predicted to be causal with bioinformatic tools (Supplementary Fig. 9)3,13.  115 

 116 

After accounting for gene-based signals explained by a single variant driving the association 117 

statistics (Supplementary Fig. 10), we identified ten genes that harbor more than one coding 118 

variant associated with height variation, and for which the gene-based results remained 119 

significant after conditioning on genotypes at nearby common height-associated variants (Table 120 

3 and Supplementary Table 15). Using the same gene-based tests in an independent dataset of 121 

59,804 individuals genotyped on the same exome array, we replicated three genes at P<0.05 122 
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(Table 3). Further evidence for replication in these genes was seen at the level of single variants 123 

(Supplementary Table 16). For one of the genes, OSGIN1, we found that conditioning on rare 124 

variants from this gene affected the results from the single variant analysis. Specifically, two 125 

independent variants in CRISPLD2 (rs149615348, MAF=0.7%, P=9.1x10-12; rs2326458, 126 

MAF=26%, P=2.7x10-15) became less significant after conditioning on OSGIN1 variants 127 

(Supplementary Fig. 11). Despite this result, CRISPLD2 is a promising height candidate gene 128 

as a third variant in CRISPLD2, the rare missense rs148934412 (MAF=0.08%, P=7.6x10-14), 129 

remains highly significant after conditioning on OSGIN1 variants (Supplementary Fig. 11). 130 

From the gene-based results, three genes – CSAD, NOX4, and UGGT2 – fell outside of the loci 131 

found by single-variant analyses and are implicated in human height for the first time. 132 

 133 

Coding variants implicate biological pathways in human skeletal growth  134 

Prior pathway analyses of height loci identified by GWAS have highlighted gene sets related to 135 

both general biological processes (such as chromatin modification and regulation of embryonic 136 

size) and more skeletal growth-specific pathways (chondrocyte biology, extracellular matrix 137 

(ECM), and skeletal development)3. We used two different methods, DEPICT13 and PASCAL14 138 

(Online Methods), to perform pathway analyses using the ExomeChip results to test whether 139 

non-synonymous variants could either independently confirm the relevance of these previously 140 

highlighted pathways (and further implicate specific genes in these pathways), or identify new 141 

pathways. To compare the pathways emerging from coding and non-coding variation, we applied 142 

DEPICT separately on (1) exome array-wide significant coding variants independent of known 143 

GWAS signals and (2) non-coding GWAS loci, excluding all novel height-associated genes 144 

implicated by coding variants. We identified a total of 496 and 1,623 enriched gene sets, 145 
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respectively, at a false discovery rate (FDR) <1% (Supplementary Tables 17-18); similar 146 

analyses with PASCAL yielded 362 and 278 enriched gene sets (Supplementary Tables 19-20). 147 

Comparison of the results revealed largely shared biology for coding and non-coding variants, 148 

especially in the DEPICT analyses, but some pathways showed stronger enrichment with either 149 

coding or non-coding variation. In general, coding variants more strongly implicated pathways 150 

specific to skeletal growth (such as ECM and bone growth), while GWAS signals highlighted 151 

more global biological processes (such as transcription factor binding and embryonic 152 

size/lethality)(Supplementary Fig. 12). The two gene sets significant in both DEPICT and 153 

PASCAL analyses and that were uniquely implicated by coding variants were “BCAN protein 154 

protein interaction subnetwork” and “proteoglycan binding.” Both of these pathways relate to the 155 

biology of proteoglycans, which are proteins (such as aggrecan) that contain glycosaminoglycans 156 

(such as chrondroitin sulfate) and that have well-established connections to skeletal growth15.  157 

 158 

We also examined which height-associated genes identified by ExomeChip analyses were 159 

driving enrichment of pathways such as proteoglycan binding. Using unsupervised clustering 160 

analysis to aid in visualization, we observed that a cluster of height-associated genes is strongly 161 

implicated in a group of correlated pathways that include biology related to 162 

proteoglycans/glycosaminoglycans (Fig. 2 and Supplementary Fig. 13). Strikingly, many of 163 

these genes are already annotated in OMIM as underlying disorders of skeletal growth; as such, 164 

the remaining genes may be strong candidates for harboring variants that cause Mendelian 165 

growth disorders. Within this group are genes that are largely uncharacterized (SUSD5), have 166 

relevant biochemical functions (GLT8D2, a glycosyltransferase studied mostly in the context of 167 

the liver16; LOXL4, a lysyl oxidase expressed in cartilage17), modulate pathways known to affect 168 
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skeletal growth (FIBIN, SFRP4)18,19 or lead to increased body length when knocked out in mice 169 

(SFRP4)20.  170 

 171 

Functional characterization of rare STC2 variants 172 

To begin exploring whether the identified rare coding variants affect protein function, we 173 

performed in vitro functional analyses of two rare coding variants in a particularly compelling 174 

and novel candidate gene, STC2. Over-expression of STC2 diminishes growth in mice by 175 

covalent binding and inhibition of the proteinase PAPP-A, which specifically cleaves IGF 176 

binding protein-4 (IGFBP-4), leading to reduced levels of bioactive insulin-like growth factors 177 

(Fig. 3A)21. Although there was no prior genetic evidence implicating STC2 variation in human 178 

growth, the PAPPA and IGFBP4 genes were both implicated in height GWAS3, and rare 179 

mutations in PAPPA2 cause severe short stature22, emphasizing the likely relevance of this 180 

pathway in humans. The two STC2 height-associated variants are rs148833559 (p.Arg44Leu, 181 

MAF=0.096%, Pdiscovery=5.7x10-15) and rs146441603 (p.Met86Ile, MAF=0.14%, 182 

Pdiscovery=2.1x10-5). These rare alleles increase height by 1.9 and 0.9 cm, respectively, suggesting 183 

that they both partially impair STC2 function. In functional studies, STC2 with these amino acid 184 

substitutions were expressed at similar levels to wild-type, but showed clear, partial defects in 185 

binding to PAPP-A and in inhibition of PAPP-A-mediated cleavage of IGFBP-4 (Fig. 3B-D). 186 

Thus, the genetic analysis successfully identified rare coding alleles that have demonstrable and 187 

predicted functional consequences, strongly confirming the role of these variants and the STC2 188 

gene in human growth.     189 

 190 

Pleiotropic effects and clinical significance 191 
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Previous GWAS studies have reported pleiotropic or secondary effects on other phenotypes for 192 

many common variants associated with adult height3,23. Therefore, we explored to which extent 193 

the identified coding variants are associated with 17 human complex phenotypes for which well-194 

powered meta-analysis results were available. Of the 606 height variants identified by single-195 

variant analyses in this study, we found that 96 were associated with at least one of the other 196 

investigated traits at array-wide significance (P<2x10-7), including one rare and five low-197 

frequency missense variants (see below, Supplementary Fig. 14, and Supplementary Table 198 

21). Overall, the 606 height signals were enriched for variants nominally associated with body 199 

mass index (BMI; Pbinomial=1.2x10-10), LDL-cholesterol (LDL-C; Pbinomial =3.5x10-6), total 200 

cholesterol (TC; Pbinomial =4.4 x10-8), triglycerides (TG; Pbinomial =8.9x10-7) and coronary artery 201 

disease (CAD; Pbinomial =6.0x10-10) (Supplementary Table 22).  202 

 203 

Of the rare and low-frequency missense variants associated with other traits at array-wide 204 

significance, the minor alleles at rs77542162 (ABCA6, MAF=1.7%) and rs28929474 205 

(SERPINA1, MAF=1.8%) were associated with increased height and increased levels of LDL-C 206 

and TC, whereas the minor allele at rs3208856 in CBLC (MAF=3.4%) was associated with 207 

increased height, HDL-cholesterol (HDL-C) and TG, but lower LDL-C and TC levels. The 208 

minor allele at rs141845046 (ZBTB7B, MAF=2.8%) was associated with both increased height 209 

and BMI. The minor alleles at the other two missense variants associated with shorter stature, 210 

rs201226914 in PIEZO1 (MAF=0.2%) and rs35658696 in PAM (MAF=4.8%), were associated 211 

with decreased glycated haemoglobin (HbA1c) and increased type 2 diabetes risk, respectively. 212 

Consistent with a recent report24, the most pleiotropic variant that we found was the missense 213 

rs13107325 (MAF=6.2%) in SLC39A8: the minor allele is associated with decreased height, 214 
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increased BMI, decreased HDL-C, LDL-C, and TC, but increased TG, and decreased systolic 215 

and diastolic blood pressure (Supplementary Fig. 14 and Supplementary Table 21). Rare 216 

mutations in SLC39A8 cause variable short stature phenotypes25,26, whereas common variants in 217 

this gene were previously associated with metabolic syndrome, inflammation, and 218 

hypertension27-30.  219 

 220 

Our set of variants associated with height includes several missense variants in genes underlying 221 

monogenic syndromes affecting skeletal growth such as ACAN (MIM 165800, 608361), PTH1R 222 

(MIM 60002, 215045), IHH (MIM 607778, 112500), FBN2 (MIM 121050), ADAMTS10 (MIM 223 

277600) and ADAMTS17 (MIM 613195) (Supplementary Table 11). To further explore the 224 

clinical significance of height variants, we queried the ClinVar database and retrieved 225 

information on 8,736 variants, including 1,446 markers that are, or predicted to be, pathogenic 226 

(Supplementary Fig. 15 and Supplementary Table 23). Of this group, The NIH Genetic 227 

Testing Registry recommends testing for four height-associated variants. Two coding variants 228 

(rs80356487, MAF=0.03%, β=-1.7 cm; rs1801175, MAF=0.04%, β=-1.2 cm) are located in 229 

G6PC. Mutations in G6PC cause glycogen storage disorder type Ia (von Gierke Disease), which 230 

is characterized by growth retardation, delayed puberty, and metabolic abnormalities (MIM 231 

232200). The other two variants are rs1800562 (MAF=6.0%, β=+0.2 cm) in HFE, which causes 232 

type-1 hemochromatosis (MIM 235200), and rs28929474 (MAF=1.8%, β=+0.8 cm) in the α-1-233 

antitrypsin gene SERPINA1 (Supplementary Table 23). When homozygous, the SERPINA1-234 

rs28929474 variant is a cause of emphysema and liver disease in European-descent individuals, 235 

and an important risk factor for severe liver disease in cystic fibrosis patients31. This is intriguing 236 

given that the low-frequency SERPINA1 allele at rs28929474 is associated with increased height 237 

and milder complication in patients with cystic fibrosis due to improve lung functions32. 238 
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DISCUSSION 239 

We undertook an association study of nearly 200,000 non-synonymous variants in 711,418 240 

individuals, and identified 32 rare and 51 low-frequency coding variants associated with adult 241 

height. Furthermore, gene-based testing discovered 10 genes that harbor several additional 242 

rare/low-frequency variants associated with height, including three genes (CSAD, NOX4, 243 

UGGT2) in loci not previously implicated in height. In total, our results highlight 89 genes (10 244 

from gene-based testing and 79 from single-variant analyses (four genes have 2 independent 245 

coding variants)) that are likely to modulate human growth, and 24 alleles segregating in the 246 

general population that affect height by more than 1 cm (Tables 1-3). The rare and low-247 

frequency coding variants explain 1.7% of the heritable variation in adult height. When 248 

considering all rare, low-frequency, and common height-associated variants validated in this 249 

study, we can now explain 27.4% of the heritability. On a per variant basis, we found that 250 

common height SNPs explain more heritability than rare or low-frequency variants (0.029% vs. 251 

0.021%). This suggests that the effect size of rare/low-frequency variants, despite being larger 252 

than for common SNPs (Fig. 1), is not as large as initially anticipated. Overall, our findings 253 

provide strong evidence that rare and low-frequency coding variants contribute to the genetic 254 

architecture of height, a model complex human trait. 255 

 256 

Our analyses revealed many coding variants in genes mutated in monogenic skeletal growth 257 

disorders (Supplementary Fig. 9), confirming the presence of allelic series (from familial 258 

penetrant mutations to mild effect common variants) in the same genes for related growth 259 

phenotypes in humans. We used gene set enrichment-type analyses to demonstrate the functional 260 

connectivity between the genes that harbor coding height variants, highlighting known as well as 261 

novel biological pathways that regulate height in humans (Fig. 2, Supplementary Fig. 13 and 262 
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Supplementary Tables 17-20), and newly implicating genes such as SUSD5, GLT8D2, LOXL4, 263 

FIBIN, and SFRP4 that have not been previously connected with skeletal growth. Additional 264 

interesting height candidate genes include NOX4, ADAMTS3 and ADAMTS6, PTH1R, and 265 

IL11RA (Tables 1-2, Supplementary Tables 15 and 24). NOX4, identified through gene-based 266 

testing, encodes NADPH oxidase 4, an enzyme that produces reactive oxygen species, a 267 

biological pathway not previously implicated in human growth. Nox4-/- mice display 268 

higher bone density and reduced numbers of osteoclasts, a cell type essential for bone repair, 269 

maintenance, and remodelling12. We also found rare coding variants in ADAMTS3 and 270 

ADAMTS6, genes that encode metalloproteinases that belong to the same family than several 271 

other human growth syndromic genes (e.g. ADAMTS2, ADAMTS10, ADAMTSL2). Moreover, we 272 

discovered a rare missense variant in PTH1R that encodes a receptor of the parathyroid hormone 273 

(PTH): PTH-PTH1R signaling is important for bone resorption and mutations in PTH1R cause 274 

chondrodysplasia in humans33. Finally, we replicated the association between a low-frequency 275 

missense variant in the cytokine gene IL11, but also found a new low-frequency missense variant 276 

in its receptor gene IL11RA. The IL11-IL11RA axis has been shown to play an important role in 277 

bone formation in the mouse34,35. Thus, our data confirm the relevance of this signaling cascade 278 

in human growth as well. Taken together, the identification of specific genes implicated in 279 

human height variation has the potential: (1) to elucidate biological mechanisms that control 280 

growth, (2) to provide candidate genes for orphan syndromes characterized by abnormal height 281 

phenotypes, and (3) to guide the development of new therapeutic strategies for growth defects. In 282 

that regard, the identification of rare missense height-increasing variants of large effect size in 283 

STC2, and the functional characterization of their effect on IGF signaling, is particularly 284 

promising.   285 
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ONLINE METHODS 325 

Study design & participants 326 

The discovery cohort consisted of 147 studies comprising 458,927 adult individuals of the 327 

following ancestries: 1) European descent (N=381,625), 2) African (N=27,494), 3) South Asian 328 

(N=29,591), 4) East Asian (N=8,767); 5) Hispanic (N=10,776) and 6) Saudi (N=695). Discovery 329 

meta-analysis was carried out in each ancestry group (except the Saudi) separately as well as in 330 

the All group. Replication was undertaken in individuals of European ancestry only 331 

(Supplementary Tables 1-3). Conditional analyses were undertaken only in the European 332 

descent group (106 studies, N=381,625).  333 

 334 

Phenotype 335 

Height (in centimeters) was corrected for age and the genomic principal components (derived 336 

from GWAS data, the variants with MAF >1% on ExomeChip, or ancestry informative markers 337 

available on the ExomeChip), as well as any additional study-specific covariates (e.g. recruiting 338 

center), in a linear regression model. For studies with non-related individuals, residuals were 339 

calculated separately by sex, whereas for family-based studies sex was included as a covariate in 340 

the model. Additionally, residuals for case/control studies were calculated separately. Finally, 341 

residuals were subject to inverse normal transformation. 342 

 343 

Genotype calling  344 

The majority of studies followed a standardized protocol and performed genotype calling using 345 

the designated manufacturer software, which was then followed by zCall36. For 10 studies 346 

participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology 347 
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(CHARGE) Consortium, the raw intensity data for the samples from seven genotyping centers 348 

were assembled into a single project for joint calling11. Study-specific quality control (QC) 349 

measures of the genotyped variants was implemented before association analysis 350 

(Supplementary Tables 1-2).  351 

 352 

Study-level statistical analyses 353 

Individual cohorts were analyzed separately for each ancestry population, with either 354 

RAREMETALWORKER (http://genome.sph.umich.edu/wiki/RAREMETALWORKER) or 355 

RVTEST (http://zhanxw.github.io/rvtests/), to associate inverse normal transformed height data 356 

with genotype data taking potential cryptic relatedness (kinship matrix) into account in a linear 357 

mixed model. These software are designed to perform score-statistics based rare-variant 358 

association analysis, can accommodate both unrelated and related individuals, and provide 359 

single-variant results and variance-covariance matrix. The covariance matrix captures linkage 360 

disequilibrium (LD) relationships between markers within 1 Mb, which is used for gene-level 361 

meta-analyses and conditional analyses37. Single-variant analyses were performed for both 362 

additive and recessive models.  363 

 364 

Centralized quality-control 365 

The individual study data were investigated for potential existence of ancestry population 366 

outliers based on 1000 Genome Project phase 1 ancestry reference populations. A centralized QC 367 

procedure implemented in EasyQC38 was applied to individual study association summary 368 

statistics to identify outlying studies: (1) assessment of possible problems in height 369 

transformation, (2) comparison of allele frequency alignment against 1000 Genomes Project 370 
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phase 1 reference data to pinpoint any potential strand issues, and (3) examination of quantile-371 

quantile (QQ) plots per study to identify any problems arising from population stratification, 372 

cryptic relatedness and genotype biases.  373 

 374 

Meta-analyses 375 

Meta-analyses were carried out in parallel by two different analysts at two sites. We excluded 376 

variants if they had call rate <95%, Hardy-Weinberg equilibrium P<1x10-7, or large allele 377 

frequency deviations from reference populations (>0.6 for all ancestry analyses and >0.3 for 378 

ancestry-specific population analyses). We also excluded from downstream analyses markers not 379 

present on the Illumina ExomeChip array 1.0, variants on the Y-chromosome or the 380 

mitochondrial genome, indels, multiallelic variants, and problematic variants based on the Blat-381 

based sequence alignment analyses. Significance for single-variant analyses was defined at 382 

array-wide level (P<2x10-7, Bonferroni correction for 250,000 variants). For the gene-based 383 

analyses, we applied two different sets of criteria to select variants, based on coding variant 384 

annotation from five prediction algorithms (PolyPhen2 HumDiv and HumVar, LRT, 385 

MutationTaster and SIFT)39. The mask labeled “broad” included variants with a MAF <0.05 386 

that are nonsense, stop-loss, splice site, as well as missense variants that are annotated as 387 

damaging by at least one program mentioned above. The mask labeled “strict” included only 388 

variants with MAF <0.05 that are nonsense, stop-loss, splice site, as well as missense variants 389 

annotated as damaging by all five algorithms. We used two tests for gene-based testing, namely 390 

the SKAT12 and VT40 tests. Statistical significance for gene-based tests was set at a Bonferroni-391 

corrected threshold of P<2x10-6 (threshold for 25,000 genes; we did not correct for the four tests 392 

given that they are correlated and that we sought validation in independent studies).  393 
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 394 

Genomic inflation 395 

We observed a marked genomic inflation of the test statistics even after adequate control for 396 

population stratification (linear mixed model) arising mainly from common markers; λGC in 397 

European-ancestry was 1.2 and 2.7 for all and common markers, respectively (Supplementary 398 

Fig. 2 and Supplementary Table 8). Such inflation is expected for a highly polygenic trait like 399 

height, and is consistent with our very large sample size3,41. To confirm this, we applied the 400 

recently developed linkage disequilibrium (LD) score regression method to our height 401 

ExomeChip results42, with the caveats that the method was developed (and tested) with >200,000 402 

common markers available. We restricted our analyses to 15,848 common variants (MAF ≥5%) 403 

from the European-ancestry meta-analysis, and matched them to pre-computed LD scores for the 404 

European reference dataset42. The intercept of the regression of the χ2 statistics from the height 405 

meta-analysis on the LD score estimate the inflation in the mean χ2 due to confounding bias, 406 

such as cryptic relatedness or population stratification. The intercept is 1.4 (standard error = 407 

0.07), which is small when compared to the λGC of 2.7. The ratio statistic of (intercept -1) / 408 

(mean χ2 -1) is 0.067 (standard error = 0.012), well within the normal range42, suggesting that 409 

most of the inflation (~93%) observed in the height association statistics is due to polygenic 410 

effects (Supplementary Fig. 3). 411 

 412 

Furthermore, to exclude the possibility that some of the observed associations between height 413 

and rare/low-frequency variants could be due to allele calling problems in the smaller studies, we 414 

performed a sensitivity meta-analysis with primarily Europe-ancestry studies totaling >5,000 415 
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participants. We found very concordant effect sizes, suggesting that smaller studies do not bias 416 

our results (Supplementary Fig. 4).  417 

 418 

Conditional analyses 419 

The RAREMETAL R-package43 and the GCTA v1.2444 software were used to identify 420 

independent height association signals across the European descent meta-analysis results. 421 

RAREMETAL performs conditional analyses by using covariance matrices in order to 422 

distinguish true signals from those driven by LD with adjacent known variants. First, we 423 

identified the lead variants (P<2x10-7) based on a 1 Mb window centered on the most 424 

significantly associated variant and performed LD pruning (r2<0.3) to avoid downstream 425 

problems in the conditional analyses due to co-linearity. We then conditioned on the LD-pruned 426 

set of lead variants in RAREMETAL and kept new lead signals at P<2x10-7. The process was 427 

repeated until no additional signal emerged below the pre-specified P-value threshold. The use of 428 

a 1Mb window in RAREMETAL can obscure dependence between conditional signals in 429 

adjacent intervals in regions of extended LD. To detect such instances, we performed joint 430 

analyses using GCTA in the ARIC and UK ExomeChip reference panels, both of which 431 

comprise >10,000 individuals of European descent. Gene-based conditional analyses were also 432 

performed in RAREMETAL. 433 

 434 

The newly discovered 120 height variants were conditioned on the previously published GWAS 435 

height variants3 in the first release of the UK Biobank imputed dataset using regression 436 

methodology implemented in BOLT-LMM45. We also explored an alternative approach based on 437 

approximate conditional analysis44. This latter method relies on summary statistics available 438 
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from the same cohort, thus we first imputed summary statistics46 for exome variants, using 439 

summary statistics from the Wood et al. 2014 study3. Conversely, we imputed the top variants 440 

from the Wood et al. 2014 study using the summary statistics from the ExomeChip. 441 

Subsequently, we calculated effect sizes for each exome variant conditioned on the Wood et al. 442 

2014 top variants in two ways. First, we conditioned the imputed summary statistics of the 443 

exome variant on the summary statistics of the Wood et al. 2014 top variants that fell within 5 444 

Mb of the target ExomeChip variant. Second, we conditioned the summary statistics of the 445 

ExomeChip variant on the imputed summary statistics of the Wood et al. 2014 hits. We then 446 

selected the option that yielded a higher imputation quality. For poorly tagged variants (̂ݎଶ< 0.8), 447 

we simply used up-sampled HapMap summary statistics for the approximate conditional 448 

analysis. Pairwise SNP-by-SNP correlations were estimated from the UK10K data (TwinsUK47 449 

and ALSPAC48 studies , N=3,781). 450 

 451 

Description of the single-variant analyses  452 

We conducted single-variant meta-analyses in a discovery sample of 458,927 individuals of 453 

different ancestries using both additive and recessive genetic models (Supplementary Fig. 1 and 454 

Supplementary Tables 1-4). The combined additive analyses identified 1,455 unique variants 455 

that reached array-wide significance (P<2x10-7), including 578 non-synonymous and splice site 456 

variants (Supplementary Tables 5-7). Under the additive model, we observed a high genomic 457 

inflation of the test statistics (e.g. λGC of 2.7 in European-ancestry studies for common markers, 458 

Supplementary Fig. 2 and Supplementary Table 8), although replication results (see below) 459 

and additional sensitivity analyses (see above) suggest that it is consistent with polygenic 460 

inheritance as opposed to population stratification, cryptic relatedness, or technical artifacts 461 
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(Supplementary Figs 3-4). The majority of these 1,455 association signals (1,241; 85.3%) were 462 

found in the European-ancestry meta-analysis (85.5% of the discovery sample size) 463 

(Supplementary Fig. 5). Nevertheless, we discovered eight associations within five loci in our 464 

all-ancestry analyses that are driven by African studies (including one missense variant in the 465 

growth hormone gene GH1 (rs151263636), Supplementary Fig. 6), three height variants found 466 

only in African studies, and one rare missense marker associated with height in South Asians 467 

only (Supplementary Table 7). 468 

 469 

Several studies, totaling 252,491 independent individuals of European ancestry, became 470 

available after the completion of the discovery analyses, and were thus used for validation of our 471 

experiment. First, we considered the 81 variants with suggestive association in the discovery 472 

analyses (2x10-7<Pdiscovery≤2x10-6). Of those 81 variants, 55 reached significance after combining 473 

discovery and replication results based on Pcombined<2x10-7 (Supplementary Table 9). 474 

Furthermore, recessive modeling confirmed seven new independent markers with Pcombined<2x10-475 

7, including one rare missense variant (rs137852591, MAF 0.21%) in the AR gene 476 

(Supplementary Table 10). To test the independence and integrate all height markers from the 477 

discovery and replication phase, we used conditional analyses and GCTA “joint” modeling44 in 478 

the combined discovery and replication set. This resulted in the identification of 606 independent 479 

height variants, including 252 non-synonymous or splice site variants (Supplementary Table 480 

11). Of the 606 variants, 605 had concordant direction of effect between the discovery and 481 

validation studies, and 595 variants had a Pvalidation<0.05 (482 variants with Pvalidation <8x10-5, 482 

Bonferroni correction for 606 tests), suggesting a very low false discovery rate (Supplementary 483 

Table 11). 484 
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 485 

Pathway analyses 486 

DEPICT is a computational framework that uses probabilistically-defined reconstituted gene sets 487 

to perform gene set enrichment and gene prioritization13. For a description about gene set 488 

reconstitution please refer to references 13 and 49. In brief, reconstitution was performed by 489 

extending pre-defined gene sets (such as Gene Ontology terms, canonical pathways, protein-490 

protein interaction subnetworks and rodent phenotypes) with genes co-regulated with genes in 491 

these pre-defined gene set using large-scale  microarray-based transcriptomics data. In order to 492 

adapt the gene set enrichment part of DEPICT for ExomeChip data, we made two principal 493 

changes. First and foremost, because DEPICT for GWAS incorporates all genes within a given 494 

LD block around each index SNP, we modified DEPICT to take as input only the gene directly 495 

impacted by the coding SNP. Second, we adapted the way DEPICT adjust for confounders (such 496 

as gene length) by generating null ExomeChip association results using Swedish ExomeChip 497 

data (Malmö Diet and Cancer (MDC), All New Diabetics in Scania (ANDIS), and Scania 498 

Diabetes Registry (SDR) cohorts, N=11,899) and randomly assigning phenotypes from a normal 499 

distribution before conducting association analysis (see Supplementary Note). For the gene set 500 

enrichment analysis of the ExomeChip data, we used significant non-synonymous variants 501 

statistically independent of known GWAS hits (and that were present in the null ExomeChip 502 

data; See Supplementary Note for details). For gene set enrichment analysis of the GWAS data, 503 

we used all loci (1) with a non-coding index SNP and (2) that did not contain any of the novel 504 

ExomeChip genes. In visualizing the analysis, we used affinity propagation clustering50 to group 505 

the most similar reconstituted gene sets based on their gene memberships (See Supplementary 506 

Note). Within a “meta-gene set”, the best P-value of any member gene set was used as 507 
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representative for comparison.  DEPICT for ExomeChip was written using the Python 508 

programming language and the code can be found at https://github.com/perslab/ec-depict. 509 

 510 

We also applied the PASCAL pathway analysis tool14 to genome-wide association summary 511 

statistics for all coding variants. In brief, the method derives gene-based scores (both SUM and 512 

MAX statistics) and subsequently tests for the over-representation of high gene scores in 513 

predefined biological pathways. We used standard pathway libraries from KEGG, REACTOME 514 

and BIOCARTA, and also added dichotomized (Z-score>3) reconstituted gene sets from 515 

DEPICT13. To accurately estimate SNP-by-SNP correlations even for rare variants, we used the 516 

UK10K data (TwinsUK47 and ALSPAC48 studies , N=3781). In order to separate the contribution 517 

of regulatory variants from the coding variants, we also applied PASCAL to association 518 

summary statistics of only regulatory variants (20 kb upstream, gene body excluded) from the 519 

Wood et al. study3. In this way, we could classify pathways driven principally by coding, 520 

regulatory or mixed signals. 521 

 522 

Validation 523 

We performed single-variant and gene-based association analyses for eight validation studies, 524 

totaling 59,804 participants, genotyped on the Exomechip using RAREMETAL37. We sought 525 

additional evidence for association for the top signals in two independent studies in the UK (UK 526 

Biobank) and Iceland (deCODE), comprising 120,084 and 72,613 individuals, respectively. We 527 

used the same QC and analytical methodology as described above. Genotyping and study 528 

descriptives are provided in Supplementary Tables 1-3. For the combined analysis, we used the 529 

inverse-variance weighted fixed effects meta-analysis method using METAL51. Significant 530 
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associations were defined as those with a combined meta-analysis (discovery and validation) 531 

Pcombined<2x10-7. 532 

 533 

STC2 functional experiments 534 

Mutagenesis, cell culture and transfection. For the generation of STC2 mutants (R44L and 535 

M86I), wild-type STC2 cDNA contained in pcDNA3.1/Myc-His(-) (Invitrogen)21 was used as a 536 

template. Mutagenesis was carried out using Quickchange (Stratagene), and all constructs were 537 

verified by sequence analysis. Recombinant wild-type STC2 and variants were expressed in 538 

human embryonic kidney (HEK) 293T cells (293tsA1609neo) maintained in high-glucose 539 

DMEM supplemented 10% fetal bovine serum, 2 mM glutamine, nonessential amino acids, and 540 

gentamicin. Cells (6x106) were plated onto 10 cm-dishes and transfected 18 h later by calcium 541 

phosphate coprecipitation using 10 μg plasmid DNA. Media were harvested 48 h post 542 

transfection, cleared by centrifugation, and stored at -20°C until use. Protein concentrations (58-543 

66 nM) were determined by TRIFMA using antibodies described previously21. PAPP-A was 544 

expressed stably in HEK293T cells as previously reported52. Expressed levels of PAPP-A (27.5 545 

nM) were determined by a commercial ELISA (AL-101, Ansh Labs, TX). 546 

 547 

STC2 and PAPP-A complex formation. Culture supernatants containing wild-type STC2 or 548 

variants were adjusted to 58 nM, added an equal volume of culture supernatant containing 549 

PAPP-A corresponding to a 2.1-fold molar excess, and incubated at 37°C. Samples were taken at 550 

1, 2, 4, 6, 8, 16, and 24 h and stored at -20oC. 551 

 552 
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Analysis of proteolytic activity. Specific proteolytic cleavage of 125I-labeled IGFBP-4 is 553 

described in detail elsewhere53. Briefly, the PAPP-A:STC2 complex mixtures were diluted 554 

(1:190) to a concentration of 145 pM PAPP-A and mixed with preincubated 125I-IGFBP4 (10 555 

nM) and IGF-1 (100 nM) in 50 mM Tris-HCl, 100 mM NaCl, 1 mM CaCl2. Following 1 h 556 

incubation at 37oC, reactions were terminated by the addition of SDS-PAGE sample buffer 557 

supplemented with 25 mM EDTA. Substrate and co-migrating cleavage products were separated 558 

by 12% nonreducing SDS-PAGE and visualized by autoradiography using a storage phosphor 559 

screen (GE Healthcare) and a Typhoon imaging system (GE Healthcare). Band intensities were 560 

quantified using ImageQuant TL 8.1 software (GE Healthcare). 561 

 562 

Western blotting. STC2 and covalent complexes between STC2 and PAPP-A were blotted onto 563 

PVDF membranes (Millipore) following separation by 3-8% SDS-PAGE. The membranes were 564 

blocked with 2% Tween-20, and equilibrated in 50 mM Tris-HCl, 500 mM NaCl, 0.1% Tween-565 

20, pH 9 (TST). For STC2, the membranes were incubated with goat polyclonal anti-STC2 566 

(R&D systems, AF2830) at 0.5 μg/ml in TST supplemented with 2% skim milk for 1 h at 20°C. 567 

For PAPP-A:STC2 complexes, the membranes were incubated with rabbit polyclonal anti-568 

PAPP-A54 at 0.63 μg/ml in TST supplemented with 2% skim milk for 16 h at 20°C. Membranes 569 

were washed with TST and subsequently incubated with polyclonal swine anti-rabbit IgG-HRP 570 

(DAKO, P0217) or polyclonal rabbit anti-goat IgG-HRP (DAKO, P0449), respectively, diluted 571 

1:2000 in TST supplemented with 2% skim milk for 1 h at 20°C. Following washing with TST, 572 

membranes were developed using enhanced chemiluminescence (ECL Prime, GE Healthcare). 573 

Images were captured using an ImageQuant LAS 4000 instrument (GE Healthcare). 574 

 575 
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Pleiotropy analyses 576 

We accessed ExomeChip data from GIANT (BMI, waist-hip ratio), GLGC (total cholesterol 577 

(TC), triglycerides (TG), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C)), IBPC (systolic 578 

and diastolic blood pressure), MAGIC (glycaemic traits), REPROGEN (age at menarche and 579 

menopause), and DIAGRAM (type 2 diabetes).  For coronary artery disease, we accessed 1000 580 

Genomes Project-imputed GWAS data released by CARDIoGRAMplusC4D55. 581 

  582 
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Table 1. Rare variants associated with adult height. 32 coding or splice site variants with minor allele frequency <1% in European-ancestry 592 

participants that have Pcombined <2x10-7. All markers are significant under an additive genetic model, except AR-rs137852591, which was discovered 593 

using the recessive model in the all-ancestry analysis. The direction of the effect (Beta) and effect allele frequency (AF) is given for the alternate 594 

(Alt) allele. Genomic coordinates are on build 37 of the human genome. For each variant, we provide the most severe annotation using the 595 

ENSEMBL Variant Effect Predictor (VEP) tool. N, sample size; Ref, reference allele; SE, standard error. 596 

     Discovery (N up to 381,625) Validation (N up to 252,491) Combined  (N up to 634,116) 
Variant Chr:Pos Ref/Alt Gene Annotation AF Beta SE P-value AF Beta SE P-value AF Beta SE P-value 

rs150341307 1:32673514 G/C IQCC missense 0.002 -0.141 0.026 7.92E-08 0.004 -0.116 0.025 3.83E-06 0.003 -0.128 0.018 1.34E-12 
rs143365597 1:41540902 G/A SCMH1 missense 0.004 0.188 0.018 1.58E-25 0.006 0.169 0.024 9.42E-13 0.005 0.181 0.014 1.35E-36 
rs114233776 1:41618297 G/A SCMH1 missense 0.006 -0.119 0.015 1.92E-15 0.006 -0.11 0.019 1.32E-08 0.006 -0.116 0.012 1.80E-22 
rs145659444 1:149902342 C/T MTMR11 missense 0.007 0.067 0.015 4.16E-06 0.006 0.083 0.019 7.11E-06 0.007 0.073 0.012 3.03E-10 
rs144712473 1:183495812 A/G SMG7 missense 0.006 -0.094 0.014 4.97E-11 0.008 -0.067 0.017 8.94E-05 0.007 -0.083 0.011 1.61E-14 
rs144673025 1:223178026 T/C DISP1 missense 0.008 -0.078 0.013 1.11E-09 0.007 -0.086 0.018 1.22E-06 0.008 -0.081 0.011 1.27E-14 
rs142036701 2:219924961 G/T IHH missense 0.001 -0.32 0.04 1.09E-15 0.003 -0.263 0.043 1.48E-09 0.002 -0.294 0.029 1.85E-23 
rs147445258 2:220078652 C/T ABCB6 missense 0.01 -0.086 0.012 3.43E-13 0.009 -0.064 0.018 4.40E-04 0.01 -0.079 0.01 2.47E-15 
rs121434601 3:46939587 C/T PTH1R missense 0.003 0.154 0.023 1.30E-11 0.003 0.192 0.031 5.48E-10 0.003 0.168 0.019 1.14E-19 
rs141374503 4:73179445 C/T ADAMTS3 missense 0.003 -0.119 0.021 1.82E-08 0.004 -0.089 0.023 1.32E-04 0.004 -0.106 0.016 1.30E-11 
rs149385790 4:120422407 T/G PDE5A missense 0.001 0.257 0.031 7.50E-17 0.005 0.19 0.033 1.28E-08 0.003 0.226 0.023 2.65E-23 
rs146301345 5:32784907 G/A NPR3 missense 0.003 0.128 0.022 1.05E-08 0.002 0.166 0.035 1.78E-06 0.003 0.139 0.019 7.91E-14 
rs61736454 5:64766798 G/A ADAMTS6 missense 0.002 -0.152 0.026 7.82E-09 0.002 -0.182 0.032 1.37E-08 0.002 -0.164 0.02 4.80E-16 
rs78727187 5:127668685 G/T FBN2 missense 0.006 0.183 0.015 2.47E-33 0.006 0.181 0.02 5.06E-20 0.006 0.182 0.012 1.47E-52 
rs148833559 5:172755066 C/A STC2 missense 0.001 0.29 0.037 5.69E-15 0.001 0.368 0.043 1.32E-17 0.001 0.323 0.028 1.15E-30 
rs148543891 6:155450779 A/G TIAM2 missense 0.003 -0.124 0.022 1.45E-08 0.001 -0.016 0.082 8.50E-01 0.003 -0.117 0.021 3.96E-08 
rs41511151 7:73482987 G/A ELN missense 0.004 -0.086 0.018 2.63E-06 0.007 -0.061 0.019 1.51E-03 0.006 -0.074 0.013 2.31E-08 
rs112892337 8:135614553 G/C ZFAT missense 0.004 0.196 0.019 4.42E-26 0.004 0.184 0.024 1.20E-14 0.004 0.191 0.015 6.12E-38 
rs75596750 8:135622851 G/A ZFAT missense 0.001 0.255 0.036 1.54E-12 0.002 0.339 0.039 5.94E-18 0.002 0.293 0.027 2.05E-28 
rs138273386 11:27016360 G/A FIBIN missense 0.004 -0.12 0.017 5.79E-12 0.005 -0.076 0.024 1.56E-03 0.004 -0.105 0.014 3.26E-14 
rs138059525 11:94533444 G/A AMOTL1 missense 0.009 -0.096 0.012 9.01E-16 0.007 -0.089 0.017 3.84E-07 0.008 -0.094 0.01 2.84E-21 
rs147996581 12:58138971 G/A TSPAN31 missense 0.003 -0.116 0.022 8.26E-08 0.001 -0.268 0.09 2.85E-03 0.003 -0.125 0.021 5.50E-09 
rs13141 12:121756084 G/A ANAPC5 missense 0.009 -0.082 0.012 1.09E-11 0.011 -0.105 0.016 1.44E-11 0.01 -0.091 0.01 1.45E-21 
rs150494621 15:44153571 C/T WDR76 missense 0.008 0.063 0.013 1.56E-06 0.014 0.054 0.015 3.42E-04 0.011 0.059 0.01 2.32E-09 
rs141308595 15:89424870 G/T HAPLN3 missense 0.001 -0.267 0.037 2.84E-13 0.002 -0.234 0.035 2.43E-11 0.002 -0.25 0.025 1.02E-22 
rs141923065 16:31474091 A/G ARMC5 splice_acceptor 0.006 0.104 0.015 5.88E-12 0.013 0.057 0.018 1.16E-03 0.009 0.084 0.011 1.62E-13 
rs34667348 16:47684830 C/A PHKB missense 0.005 0.121 0.016 3.96E-14 0.005 0.033 0.020 1.04E-01 0.005 0.088 0.013 3.43E-12 
rs140385822 16:67470505 G/A HSD11B2 missense 0.002 -0.148 0.028 1.27E-07 0.002 -0.124 0.035 3.38E-04 0.002 -0.139 0.022 1.97E-10 
rs149615348 16:84900645 G/A CRISPLD2 missense 0.007 -0.095 0.014 9.13E-12 0.008 -0.098 0.017 4.34E-09 0.008 -0.096 0.011 2.92E-19 
rs148934412 16:84902472 G/A CRISPLD2 missense 0.001 -0.297 0.04 7.75E-14 0.001 -0.317 0.058 3.49E-08 0.001 -0.304 0.033 2.36E-20 
rs201226914 16:88798919 G/T PIEZO1 missense 0.002 -0.187 0.027 5.27E-12 0.002 -0.241 0.043 1.99E-08 0.002 -0.202 0.023 8.68E-19 
rs137852591 23:66941751 C/G AR missense 0.002 -0.304 0.061 7.05E-07 0.008 -0.333 0.058 7.12E-09 0.005 -0.319 0.042 2.67E-14 

  597 
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Table 2. Low-frequency variants associated with adult height. 59 variants (51 coding) with minor allele frequency between 1 and 5% in 598 

European-ancestry participants that have Pcombined <2x10-7 under an additive genetic model. For TTN-rs16866412 and NOL8-rs921122, the 599 

association is significant (P<2x10-7) upon conditional analysis. The direction of the effect (Beta) and effect allele frequency (AF) is given for the 600 

alternate (Alt) allele. For each variant, we provide the most severe annotation using the ENSEMBL Variant Effect Predictor (VEP) tool. N, sample 601 

size; Ref, reference allele; SE, standard error 602 

     Discovery (N up to 381,625) Validation (N up to 252,491) Combined  (N up to 634,116) 
Variant Chr:Pos Ref/Alt Gene Annotation AF Beta SE P-value AF Beta SE P-value AF Beta SE P-value 

rs41292521 1:51873967 G/A EPS15 missense 0.020 0.045 0.008 5.07E-08 0.023 0.065 0.010 7.60E-11 0.021 0.053 0.006 2.56E-17 
rs61730011 1:119427467 A/C TBX15 missense 0.042 -0.059 0.006 1.61E-24 0.046 -0.056 0.007 4.19E-15 0.044 -0.058 0.005 2.79E-36 
rs11580946 1:150551327 G/A MCL1 missense 0.014 0.061 0.010 2.16E-09 0.015 0.085 0.012 7.86E-12 0.015 0.070 0.008 1.55E-19 
rs141845046 1:154987704 C/T ZBTB7B missense 0.028 0.058 0.007 7.30E-17 0.025 0.061 0.010 4.46E-10 0.027 0.059 0.006 3.46E-25 
rs79485039 1:180886140 C/T KIAA1614 missense 0.026 0.034 0.007 1.41E-06 0.031 0.030 0.009 4.51E-04 0.028 0.033 0.006 2.63E-09 
rs52826764 2:20205541 C/T MATN3 missense 0.026 -0.071 0.007 2.67E-23 0.028 -0.084 0.010 6.60E-19 0.027 -0.076 0.006 3.74E-41 
rs16859517 2:219949184 C/T NHEJ1 intron 0.036 0.059 0.006 5.96E-21 0.036 0.064 0.008 1.12E-15 0.036 0.061 0.005 8.20E-37 
rs16866412 2:179474668 G/A TTN missense 0.013 -0.053 0.010 1.35E-07 0.010 -0.019 0.015 2.15E-01 0.012 -0.042 0.008 3.44E-07 
rs7571816 2:233077064 A/G DIS3L2 intron 0.025 -0.060 0.007 2.35E-16 0.023 -0.079 0.010 2.58E-15 0.024 -0.066 0.006 6.46E-31 
rs2229089 3:14214524 G/A XPC missense 0.031 -0.038 0.007 1.22E-08 0.035 -0.020 0.008 1.68E-02 0.033 -0.030 0.005 1.29E-08 
rs76208147 3:47162886 C/T SETD2 missense 0.019 0.048 0.009 2.24E-08 0.016 0.062 0.012 2.22E-07 0.018 0.053 0.007 1.65E-13 
rs35713889 3:49162583 C/T LAMB2 missense 0.039 0.043 0.006 3.28E-12 0.045 0.060 0.007 1.33E-16 0.041 0.050 0.005 3.49E-27 
rs9838238 3:98600385 T/C DCBLD2 missense 0.047 0.029 0.005 1.23E-07 0.051 0.027 0.007 5.62E-05 0.048 0.028 0.004 1.68E-12 
rs11722554 4:5016883 G/A CYTL1 missense 0.040 -0.049 0.006 2.01E-17 0.034 -0.057 0.009 6.68E-11 0.038 -0.052 0.005 1.86E-25 
rs61730641 4:87730980 C/T PTPN13 missense 0.015 -0.086 0.010 1.94E-19 0.016 -0.094 0.012 1.38E-15 0.016 -0.089 0.008 9.43E-32 
rs116807401 4:135121721 T/C PABPC4L missense 0.017 0.065 0.009 1.39E-13 0.016 0.045 0.012 1.33E-04 0.017 0.058 0.007 7.54E-16 
rs28925904 4:144359490 C/T GAB1 missense 0.019 -0.048 0.008 1.04E-08 0.023 -0.036 0.010 3.24E-04 0.021 -0.043 0.006 4.29E-12 
rs34343821 4:154557616 C/T KIAA0922 missense 0.011 0.059 0.011 7.75E-08 0.015 0.056 0.012 5.75E-06 0.013 0.058 0.008 2.18E-12 
rs35658696 5:102338811 A/G PAM missense 0.048 -0.025 0.005 3.76E-06 0.053 -0.031 0.007 8.47E-06 0.050 -0.027 0.004 1.63E-10 
rs34821177 5:126250812 C/T MARCH3 missense 0.036 0.034 0.006 4.25E-08 0.029 0.027 0.009 2.45E-03 0.034 0.032 0.005 1.67E-10 
rs62623707 5:135288632 A/G LECT2 missense 0.044 -0.030 0.006 1.02E-07 0.049 -0.024 0.007 4.77E-04 0.046 -0.027 0.005 1.36E-09 
rs34471628 5:172196752 A/G DUSP1 missense 0.036 0.048 0.006 4.00E-14 0.042 0.036 0.007 1.26E-06 0.039 0.043 0.005 1.93E-20 
rs28932177 5:176637471 G/A NSD1 missense 0.028 0.063 0.007 2.38E-17 0.027 0.065 0.009 2.62E-12 0.028 0.064 0.006 4.27E-30 
rs78247455 5:176722005 G/A NSD1 missense 0.023 -0.083 0.008 1.86E-26 0.025 -0.085 0.010 8.42E-18 0.024 -0.084 0.006 2.32E-41 
rs7757648 6:30851933 G/A DDR1 intron 0.013 -0.075 0.013 1.11E-08 0.011 -0.079 0.018 1.24E-05 0.012 -0.076 0.011 4.64E-13 
rs34427075 6:34730395 C/T SNRPC synonymous 0.014 -0.117 0.010 9.21E-33 0.016 -0.139 0.012 9.59E-31 0.015 -0.126 0.008 3.45E-60 
rs33966734 6:41903798 C/A CCND3 stop_gained 0.013 -0.140 0.017 5.51E-17 0.011 -0.101 0.018 3.41E-08 0.012 -0.122 0.012 1.28E-22 
rs17277546 7:99489571 G/A TRIM4 3'UTR 0.049 0.034 0.005 3.28E-10 0.052 0.038 0.007 2.26E-07 0.050 0.035 0.004 1.40E-17 
rs7636 7:100490077 G/A ACHE synonymous 0.043 -0.037 0.006 8.59E-10 0.035 -0.019 0.009 2.92E-02 0.040 -0.031 0.005 2.98E-10 
rs17480616 7:135123060 G/C CNOT4 missense 0.028 0.060 0.007 2.31E-17 0.030 0.054 0.009 5.04E-10 0.029 0.058 0.005 3.90E-26 
rs3136797 8:42226805 C/G POLB missense 0.018 0.044 0.009 1.95E-06 0.021 0.026 0.010 1.30E-02 0.019 0.036 0.007 1.88E-07 
rs11575580 9:34660864 C/T IL11RA missense 0.016 -0.064 0.009 5.20E-13 0.020 -0.030 0.011 4.42E-03 0.018 -0.050 0.007 4.01E-13 
rs921122 9:95063947 C/T NOL8 missense 0.039 0.041 0.009 2.56E-06 0.040 0.018 0.008 3.45E-02 0.040 0.029 0.006 3.33E-06 
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rs41274586 10:79580976 G/A DLG5 missense 0.017 -0.058 0.009 2.72E-11 0.017 -0.076 0.012 5.15E-11 0.017 -0.065 0.007 7.66E-20 
rs41291604 10:97919011 A/G ZNF518A missense 0.040 0.031 0.006 9.94E-08 0.040 0.022 0.008 3.05E-03 0.040 0.028 0.005 3.91E-09 
rs71455793 11:65715204 G/A TSGA10IP missense 0.039 -0.058 0.006 1.82E-21 0.046 -0.072 0.007 1.41E-23 0.042 -0.064 0.005 1.52E-43 
rs4072796 12:7548996 C/G CD163L1 missense 0.035 0.034 0.006 4.11E-08 0.037 0.015 0.008 6.68E-02 0.036 0.027 0.005 1.87E-08 
rs61743810 12:69140339 G/C SLC35E3 missense 0.022 -0.047 0.008 1.13E-09 0.023 -0.036 0.010 5.11E-04 0.022 -0.043 0.006 1.29E-11 
rs117801489 12:104408832 T/C GLT8D2 missense 0.017 0.053 0.009 8.72E-10 0.028 0.062 0.010 5.82E-10 0.022 0.057 0.007 1.60E-17 
rs2066674 13:50842259 G/A DLEU1 intron 0.044 0.073 0.006 2.33E-37 0.041 0.084 0.008 7.02E-25 0.043 0.077 0.005 5.66E-57 
rs17880989 14:23313633 G/A MMP14 missense 0.027 0.041 0.007 1.72E-08 0.029 0.052 0.009 7.81E-09 0.028 0.045 0.006 3.27E-16 
rs34354104 14:24707479 G/A GMPR2 missense 0.048 0.045 0.005 3.67E-16 0.050 0.047 0.007 1.34E-11 0.049 0.046 0.004 2.13E-29 
rs117295933 14:45403699 C/A KLHL28 missense 0.016 -0.045 0.009 1.55E-06 0.025 -0.036 0.010 4.13E-04 0.020 -0.041 0.007 3.05E-09 
rs41286548 14:70633411 C/T SLC8A3 missense 0.021 -0.054 0.008 2.49E-11 0.026 -0.045 0.009 2.02E-06 0.023 -0.050 0.006 2.03E-16 
rs28929474 14:94844947 C/T SERPINA1 missense 0.018 0.124 0.009 1.39E-45 0.019 0.139 0.011 2.50E-34 0.019 0.130 0.007 1.72E-75 
rs41286560 14:101349454 G/T RTL1 missense 0.024 -0.050 0.007 1.17E-11 0.028 -0.033 0.009 2.12E-04 0.026 -0.044 0.006 2.50E-15 
rs116858574 15:34520687 T/C EMC4 missense 0.014 0.047 0.010 1.16E-06 0.014 0.028 0.012 2.19E-02 0.014 0.040 0.008 1.60E-07 
rs34815962 15:72462255 C/T GRAMD2 missense 0.019 0.073 0.009 8.72E-17 0.023 0.074 0.010 3.66E-13 0.021 0.073 0.007 1.28E-27 
rs16942341 15:89388905 C/T ACAN synonymous 0.026 -0.129 0.007 4.30E-72 0.028 -0.146 0.009 1.08E-56 0.027 -0.135 0.006 3.79E-130 
rs61733564 16:4812705 A/G ZNF500 missense 0.032 0.056 0.007 8.61E-17 0.032 0.044 0.009 2.34E-07 0.032 0.051 0.005 2.89E-21 
rs113388806 16:24804954 A/T TNRC6A missense 0.040 0.036 0.006 1.08E-09 0.047 0.041 0.008 1.65E-07 0.043 0.038 0.005 1.90E-15 
rs8052655 16:67409180 G/A LRRC36 missense 0.043 -0.054 0.006 1.08E-18 0.043 -0.055 0.008 3.91E-13 0.043 -0.054 0.005 6.40E-31 
rs77542162 17:67081278 A/G ABCA6 missense 0.017 0.049 0.010 2.17E-06 0.023 0.051 0.010 5.58E-07 0.020 0.050 0.007 5.57E-12 
rs77169818 18:74980601 A/T GALR1 missense 0.047 -0.048 0.006 3.60E-18 0.038 -0.035 0.008 3.64E-05 0.044 -0.044 0.005 5.11E-19 
rs3208856 19:45296806 C/T CBLC missense 0.034 0.036 0.007 1.48E-07 0.034 0.021 0.008 1.19E-02 0.034 0.030 0.005 2.96E-08 
rs4252548 19:55879672 C/T IL11 missense 0.026 -0.114 0.007 1.02E-57 0.022 -0.101 0.010 2.28E-23 0.025 -0.110 0.006 5.32E-81 
rs147110934 19:55993436 G/T ZNF628 missense 0.021 -0.084 0.010 2.28E-18 0.022 -0.098 0.011 1.17E-18 0.022 -0.090 0.007 6.33E-34 
rs77885044 22:28501414 C/T TTC28 missense 0.012 -0.067 0.010 9.47E-11 0.017 -0.069 0.012 3.24E-09 0.014 -0.068 0.008 3.93E-19 
rs147348682 22:42095658 T/G MEI1 missense 0.025 0.041 0.007 2.25E-08 0.034 0.024 0.009 6.59E-03 0.029 0.034 0.006 3.70E-10 
  603 
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Table 3. Ten height genes implicated by gene-based testing. These genes meet our three criteria for statistical significance: (1) gene-based P<2x10-6, 604 

(2) the gene does not include variants with P<2x10-7, and (3) the gene-based P-value is at least two orders of magnitude smaller than the P-value for 605 

the most significant variant within the gene. For each gene, we provide P-values for the four different gene-based tests applied. P-values in bold are 606 

the most significant results for a given gene. 1Replication results using the same test and (when possible) variants in 59,804 European-ancestry 607 

individuals. 2When the gene is located in a locus identified by our single-variant analysis (1 Mb window), we conditioned the gene-based association 608 

result by genotypes at the single variant. 3If the gene falls within a known GWAS height locus, we mention if it was predicted to be causal using 609 

bioinformatic tools (ref. 3). NA, not applicable. 610 

 611 

Gene 
Discovery gene-based P-value 

Replication
P-value1 

Conditional 
P-value2 

Note3 SKAT-
broad 

VT-
broad 

SKAT-
strict 

VT-
strict 

OSGIN1 4.3x10-11 4.5x10-5 0.19 0.18 0.048 7.7x10-11 Known locus. No predicted causal genes. 

CRISPLD1 2.2x10-7 1.5x10-10 8.5x10-6 8.9x10-7 0.50 NA 
Known locus, sentinel GWAS SNP not tested on 

ExomeChip. CRISPLD1 was predicted to be causal. 
CSAD 2.3x10-8 6.0x10-10 0.83 0.59 0.54 NA New locus. 
SNED1 1.9x10-5 2.3x10-9 NA NA 0.083 1.4x10-9 Known locus. SNED1 was not predicted to be causal. 

G6PC 1.3x10-5 3.6x10-8 5.5x10-6 1.3x10-6 0.24 3.9x10-8 
Known locus, G6PC was not predicted to be causal. 

G6PC is mutated in glycogen storage disease Ia. 
NOX4 5.1x10-6 1.8x10-7 NA NA 0.013 NA New locus. 

UGGT2 3.0x10-5 2.0x10-7 2.3x10-5 4.8x10-7 0.64 NA New locus. 

FLNB 2.2x10-6 5.1x10-4 2.4x10-9 3.2x10-6 0.016 3.6x10-9 
Known locus. FLNB was predicted to be causal. FLNB is 

mutated in atelosteogenesis type I. 
B4GALNT3 2.4x10-5 1.9x10-5 1.8x10-5 3.4x10-7 0.79 7.7x10-7 Known locus. B4GALNT3 was predicted to be causal. 

CCDC3 6.3x10-4 6.3x10-6 3.0x10-7 5.5x10-9 0.080 1.6x10-9 Known locus. CCDC3 was predicted to be causal. 
 612 
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Figure legends 613 
 614 
Figure 1. Variants with a larger effect size on height variation tend to be rarer. We observe 615 

an inverse relationship between the effect size (from the combined “discovery+ validation” 616 

analysis, in cm on the y-axis) and the minor allele frequency (MAF) for the height variants 617 

(x-axis, from 0 to 50%). We included in this figure the 606 height variants with P<2x10-7. 618 

619 
  620 
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Figure 2. Heat map showing subset of DEPICT gene set enrichment results. The full heat 621 

map is available as Supplementary Fig. 13. For any given square, the color indicates how 622 

strongly the corresponding gene (shown on the x-axis) is predicted to belong to the 623 

reconstituted gene set (y-axis). This value is based on the gene’s Z-score for gene set 624 

inclusion in DEPICT’s reconstituted gene sets, where red indicates a higher Z-score and 625 

blue indicates a lower one. The proteoglycan binding pathway (bold) was uniquely 626 

implicated by coding variants (as opposed to common variants) by both DEPICT and the 627 

PASCAL method. To visually reduce redundancy and increase clarity, we chose one 628 

representative "meta-gene set" for each group of highly correlated gene sets based on 629 

affinity propagation clustering (Supplementary Note). Heat map intensity and DEPICT P-630 

values correspond to the most significantly enriched gene set within the meta-gene set; 631 

meta-gene sets are listed with their database source. Annotations for the genes indicate 632 

whether the gene has OMIM annotation as underlying a disorder of skeletal growth (black 633 

and grey) and the minor allele frequency of the significant ExomeChip (EC) variant (shades 634 

of blue; if multiple variants, the lowest-frequency variant was kept). Annotations for the 635 

gene sets indicate if the gene set was also found significant for EC by the PASCAL method 636 

(yellow and grey) and if the gene set was found significant by DEPICT for EC only or for 637 

both EC and GWAS (purple and green). Abbreviations: GO: Gene Ontology; MP: mouse 638 

phenotype in the Mouse Genetics Initiative; PPI: protein-protein interaction in the InWeb 639 

database. 640 
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(Figure 2) 641 

 642 

 643 
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Figure 3. STC2 mutants p.Arg44Leu (R44L) and p.Met86Ile (M86I) show compromised 644 

proteolytic inhibition of PAPP-A. (A) Schematic representation of the role of STC2 in IGF-645 

1 signaling. Partial inactivation of STC2 by height-associated DNA sequence variation 646 

could increase bioactive IGF-1 through reduced inhibition of PAPP-A. (B) Western blot 647 

analysis of recombinant STC2 wild-type and variants R44L and M86I. (C) Covalent 648 

complex formation between PAPP-A and STC2 wild-type or variants R44L and M86I. 649 

Separately synthesized proteins were analyzed by PAPP-A Western blotting following 650 

incubation for 8 h. In the absence of STC2 (Mock lane), PAPP-A appears as a single 400 651 

kDa band (*). Following incubation with wild-type STC2, the majority of PAPP-A is 652 

present as the approximately 500 kDa covalent PAPP-A:STC2 complex (#), in which 653 

PAPP-A is devoid of proteolytic activity towards IGFBP-4. Under similar conditions, 654 

incubation with variants R44L or M86I appeared to cause less covalent complex formation 655 

with PAPP-A. The gels are representative of at least three independent experiments. (D) 656 

PAPP-A proteolytic cleavage of IGFBP-4 following incubation with wild-type STC2 or 657 

variants for 1-24 h. Wild-type STC2 causes reduction in PAPP-A activity, with complete 658 

inhibition of activity following 24 h incubation. Both STC2 variants show increased 659 

IGFBP-4 cleavage (i.e. less inhibition) for all time points analyzed. Mean and standard 660 

deviations of three independent experiments are shown. One-way repeated measures 661 

analysis of variance followed by Dunnett’s post-test showed significant differences 662 

between STC2 wild-type and variants R44L (P<0.001) and M86I (P<0.01). 663 

  664 
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(Figure 3) 665 

  666 
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