165 research outputs found
Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity
We present a novel formulation for biochemical reaction networks in the
context of signal transduction. The model consists of input-output transfer
functions, which are derived from differential equations, using stable
equilibria. We select a set of 'source' species, which receive input signals.
Signals are transmitted to all other species in the system (the 'target'
species) with a specific delay and transmission strength. The delay is computed
as the maximal reaction time until a stable equilibrium for the target species
is reached, in the context of all other reactions in the system. The
transmission strength is the concentration change of the target species. The
computed input-output transfer functions can be stored in a matrix, fitted with
parameters, and recalled to build discrete dynamical models. By separating
reaction time and concentration we can greatly simplify the model,
circumventing typical problems of complex dynamical systems. The transfer
function transformation can be applied to mass-action kinetic models of signal
transduction. The paper shows that this approach yields significant insight,
while remaining an executable dynamical model for signal transduction. In
particular we can deconstruct the complex system into local transfer functions
between individual species. As an example, we examine modularity and signal
integration using a published model of striatal neural plasticity. The modules
that emerge correspond to a known biological distinction between
calcium-dependent and cAMP-dependent pathways. We also found that overall
interconnectedness depends on the magnitude of input, with high connectivity at
low input and less connectivity at moderate to high input. This general result,
which directly follows from the properties of individual transfer functions,
contradicts notions of ubiquitous complexity by showing input-dependent signal
transmission inactivation.Comment: 13 pages, 5 tables, 15 figure
Stabilization of mid-sized silicon nanoparticles by functionalization with acrylic acid
We present an enhanced method to form stable dispersions of medium-sized silicon nanoparticles for solar cell applications by thermally induced grafting of acrylic acid to the nanoparticle surface. In order to confirm their covalent attachment on the silicon nanoparticles and to assess the quality of the functionalization, X-ray photoelectron spectroscopy and diffuse reflectance infrared Fourier spectroscopy measurements were carried out. The stability of the dispersion was elucidated by dynamic light scattering and Zeta-potential measurements, showing no sign of degradation for months
Addressing social issues in a universal HIV test and treat intervention trial (ANRS 12249 TasP) in South Africa: methods for appraisal
Background: The Universal HIV Test and Treat (UTT) strategy represents a challenge for science, but is also a challenge for individuals and societies. Are repeated offers of provider-initiated HIV testing and immediate antiretroviral therapy (ART) socially-acceptable and can these become normalized over time? Can UTT be implemented without potentially adding to individual and community stigma, or threatening individual rights? What are the social, cultural and economic implications of UTT for households and communities? And can UTT be implemented within capacity constraints and other threats to the overall provision of HIV services? The answers to these research questions will be critical for routine implementation of UTT strategies.
Methods/design: A social science research programme is nested within the ANRS 12249 Treatment-as-Prevention (TasP) cluster-randomised trial in rural South Africa. The programme aims to inform understanding of the (i) social, economic and environmental factors affecting uptake of services at each step of the continuum of HIV prevention, treatment and care and (ii) the causal impacts of the TasP intervention package on social and economic factors at the individual, household, community and health system level. We describe a multidisciplinary, multi-level, mixed-method research protocol that includes individual, household, community and clinic surveys, and combines quantitative and qualitative methods.
Discussion: The UTT strategy is changing the overall approach to HIV prevention, treatment and care, and substantial social consequences may be anticipated, such as changes in social representations of HIV transmission, prevention, HIV testing and ART use, as well as changes in individual perceptions and behaviours in terms of uptake and frequency of HIV testing and ART initiation at high CD4. Triangulation of social science studies within the ANRS 12249 TasP trial will provide comprehensive insights into the acceptability and feasibility of the TasP intervention package at individual, community, patient and health system level, to complement the trial's clinical and epidemiological outcomes. It will also increase understanding of the causal impacts of UTT on social and economic outcomes, which will be critical for the long-term sustainability and routine UTT implementation. Trial registration: Clinicaltrials.gov: NCT01509508; South African Trial Register: DOH-27-0512-3974
Knowledge-based matrix factorization temporally resolves the cellular responses to IL-6 stimulation
<p>Abstract</p> <p>Background</p> <p>External stimulations of cells by hormones, cytokines or growth factors activate signal transduction pathways that subsequently induce a re-arrangement of cellular gene expression. The analysis of such changes is complicated, as they consist of multi-layered temporal responses. While classical analyses based on clustering or gene set enrichment only partly reveal this information, matrix factorization techniques are well suited for a detailed temporal analysis. In signal processing, factorization techniques incorporating data properties like spatial and temporal correlation structure have shown to be robust and computationally efficient. However, such correlation-based methods have so far not be applied in bioinformatics, because large scale biological data rarely imply a natural order that allows the definition of a delayed correlation function.</p> <p>Results</p> <p>We therefore develop the concept of graph-decorrelation. We encode prior knowledge like transcriptional regulation, protein interactions or metabolic pathways in a weighted directed graph. By linking features along this underlying graph, we introduce a partial ordering of the features (e.g. genes) and are thus able to define a graph-delayed correlation function. Using this framework as constraint to the matrix factorization task allows us to set up the fast and robust graph-decorrelation algorithm (GraDe). To analyze alterations in the gene response in <it>IL-6 </it>stimulated primary mouse hepatocytes, we performed a time-course microarray experiment and applied GraDe. In contrast to standard techniques, the extracted time-resolved gene expression profiles showed that <it>IL-6 </it>activates genes involved in cell cycle progression and cell division. Genes linked to metabolic and apoptotic processes are down-regulated indicating that <it>IL-6 </it>mediated priming renders hepatocytes more responsive towards cell proliferation and reduces expenditures for the energy metabolism.</p> <p>Conclusions</p> <p>GraDe provides a novel framework for the decomposition of large-scale 'omics' data. We were able to show that including prior knowledge into the separation task leads to a much more structured and detailed separation of the time-dependent responses upon <it>IL-6 </it>stimulation compared to standard methods. A Matlab implementation of the GraDe algorithm is freely available at <url>http://cmb.helmholtz-muenchen.de/grade</url>.</p
Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK
Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to ~1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability (K~10−1–100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K~10−2 m/day at 150–400 m BGL to 10−3 m/day down-dip at ~1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs (~0.7–1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields
Evaluation of Analytical Methods to Study Aquifer Properties with Pumping Tests in Coastal Aquifers with Numerical Modelling (Motril-Salobreña Aquifer)
Two pumping tests were performed in the unconfined Motril-Salobreña detrital
aquifer in a 250 m-deep well 300 m from the coastline containing both freshwater and
saltwater. It is an artesian well as it is in the discharge zone of this coastal aquifer. The two
observation wells where the drawdowns are measured record the influence of tidal fluctuations, and the well lithological columns reveal high vertical heterogeneity in the aquifer. The
Theis and Cooper-Jacob approaches give average transmissivity (T) and storage
coefficient (S) values of 1460 m2
/d and 0.027, respectively. Other analytical solutions,
modified to be more accurate in the boundary conditions found in coastal aquifers,
provide similar T values to those found with the Theis and Cooper-Jacob methods,
but give very different S values or could not estimate them. Numerical modelling in a
synthetic model was applied to analyse the sensitivity of the Theis and Cooper-Jacob
approaches to the usual boundary conditions in coastal aquifers. The T and S values
calculated from the numerical modelling drawdowns indicate that the regional flow,
variable pumping flows, and tidal effect produce an error of under 10 % compared to results
obtained with classic methods. Fluids of different density (freshwater and saltwater) cause an
error of 20 % in estimating T and of over 100 % in calculating S. The factor most affecting T and
S results in the pumping test interpretation is vertical heterogeneity in sediments, which can
produce errors of over 100 % in both parameters.This research has been financed by Project CGL2012-32892 (Ministerio de Economía y
Competitividad of Spain) and by the Research Group Sedimentary Geology and Groundwater (RNM-369) of the
Junta de Andalucía
Comparative proteomics: assessment of biological variability and dataset comparability
BACKGROUND: Comparative proteomics in bacteria are often hampered by the differential nature of dataset quality and/or inherent biological deviations. Although common practice compensates by reproducing and normalizing datasets from a single sample, the degree of certainty is limited in comparison of multiple dataset. To surmount these limitations, we introduce a two-step assessment criterion using: (1) the relative number of total spectra (R (TS)) to determine if two LC-MS/MS datasets are comparable and (2) nine glycolytic enzymes as internal standards for a more accurate calculation of relative amount of proteins. Lactococcus lactis HR279 and JHK24 strains expressing high or low levels (respectively) of green fluorescent protein (GFP) were used for the model system. GFP abundance was determined by spectral counting and direct fluorescence measurements. Statistical analysis determined relative GFP quantity obtained from our approach matched values obtained from fluorescence measurements. RESULTS: L. lactis HR279 and JHK24 demonstrates two datasets with an R (TS) value less than 1.4 accurately reflects relative differences in GFP levels between high and low expression strains. Without prior consideration of R (TS) and the use of internal standards, the relative increase in GFP calculated by spectral counting method was 3.92 ± 1.14 fold, which is not correlated with the value determined by the direct fluorescence measurement (2.86 ± 0.42 fold) with the p = 0.024. In contrast, 2.88 ± 0.92 fold was obtained by our approach showing a statistically insignificant difference (p = 0.95). CONCLUSIONS: Our two-step assessment demonstrates a useful approach to: (1) validate the comparability of two mass spectrometric datasets and (2) accurately calculate the relative amount of proteins between proteomic datasets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0561-9) contains supplementary material, which is available to authorized users
Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea) and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein
The compass depressors (CDs) of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the baseline (i.e. unmanipulated) static mechanical properties of the CDs of Paracentrotus lividus by means of creep tests and incremental force-extension tests, and to determine the effects on their mechanical behaviour of a range of agents. Under constant load the CDs exhibited a three-phase creep curve, the mean coefficient of viscosity being 561±365 MPa.s. The stress-strain curve showed toe, linear and yield regions; the mean strain at the toe-linear inflection was 0.86±0.61; the mean Young's modulus was 18.62±10.30 MPa; and the mean tensile strength was 8.14±5.73 MPa. Hyaluronidase from Streptomyces hyalurolyticus had no effect on creep behaviour, whilst chondroitinase ABC prolonged primary creep but had no effect on secondary creep or on any force-extension parameters; it thus appears that neither hyaluronic acid nor sulphated glycosaminoglycans have an interfibrillar load transfer function in the CD. Acetylcholine, the muscarinic agonists arecoline and methacholine, and the nicotinic agonists nicotine and 1-[1-(3,4-dimethyl-phenyl)-ethyl]-piperazine produced an abrupt increase in CD viscosity; the CDs were not differentially sensitive to muscarinic or nicotinic agonists. CDs showed either no, or no consistent, response to adrenaline, L-glutamic acid, 5-hydroxytryptamine and γ-aminobutyric acid. Synthetic echinoid tensilin-like protein had a weak and inconsistent stiffening effect, indicating that, in contrast to holothurian tensilins, the echinoid molecule may not be involved in the regulation of collagenous tissue tensility. We compare in detail the mechanical behaviour of the CD with that of mammalian tendon and highlight its potential as a model system for investigating poorly understood aspects of the ontogeny and phylogeny of vertebrate collagenous tissues.(undefined)info:eu-repo/semantics/publishedVersio
Systems protobiology:Origin of life in lipid catalytic networks
Life is that which replicates and evolves, but there is no consensus on how life emerged. We advocate a systems protobiology view, whereby the first replicators were assemblies of spontaneously accreting, heterogeneous and mostly non-canonical amphiphiles. This view is substantiated by rigorous chemical kinetics simulations of the graded autocatalysis replication domain (GARD) model, based on the notion that the replication or reproduction of compositional information predated that of sequence information. GARD reveals the emergence of privileged non-equilibrium assemblies (composomes), which portray catalysis-based homeostatic (concentration-preserving) growth. Such a process, along with occasional assembly fission, embodies cell-like reproduction. GARD pre-RNA evolution is evidenced in the selection of different composomes within a sparse fitness landscape, in response to environmental chemical changes. These observations refute claims that GARD assemblies (or other mutually catalytic networks in the metabolism first scenario) cannot evolve. Composomes represent both a genotype and a selectable phenotype, anteceding present-day biology in which the two are mostly separated. Detailed GARD analyses show attractor-like transitions from random assemblies to self-organized composomes, with negative entropy change, thus establishing composomes as dissipative systemstextemdashhallmarks of life. We show a preliminary new version of our model, metabolic GARD (M-GARD), in which lipid covalent modifications are orchestrated by non-enzymatic lipid catalysts, themselves compositionally reproduced. M-GARD fills the gap of the lack of true metabolism in basic GARD, and is rewardingly supported by a published experimental instance of a lipid-based mutually catalytic network. Anticipating near-future far-reaching progress of molecular dynamics, M-GARD is slated to quantitatively depict elaborate protocells, with orchestrated reproduction of both lipid bilayer and lumenal content. Finally, a GARD analysis in a whole-planet context offers the potential for estimating the probability of life's emergence. The invigorated GARD scrutiny presented in this review enhances the validity of autocatalytic sets as a bona fide early evolution scenario and provides essential infrastructure for a paradigm shift towards a systems protobiology view of life's origin
- …