87 research outputs found

    Subtidal macrozoobenthos communities from northern Chile during and post El Niño 1997–1998

    No full text
    Despite a large amount of climatic and oceanographic information dealing with the recurring climate phenomenon El Niño (EN) and its well known impact on diversity of marine benthic communities, most published data are rather descriptive and consequently our understanding of the underlying mechanisms and processes that drive community structure during EN are still very scarce. In this study, we address two questions on the effects of EN on macrozoobenthic communities: (1) how does EN affect species diversity of the communities in northern Chile? and (2) is EN a phenomenon that restarts community assembling processes by affecting species interactions in northern Chile? To answer these questions, we compared species diversity and co-occurrence patterns of soft-bottoms macrozoobenthos communities from the continental shelf off northern Chile during (March 1998) and after (September 1998) the strong EN event 1997–1998. The methods used varied from species diversity and species co-occurrence analyses to multivariate ordination methods. Our results indicate that EN positively affects diversity of macrozoobenthos communities in the study area, increasing the species richness and diversity and decreasing the species dominance. EN represents a strong disturbance that affects species interactions that rule the species assembling processes in shallow-water, sea-bottom environments

    Unusual magneto-optical behavior induced by local dielectric variations under localized surface plasmon excitations

    Get PDF
    We study the effect of global and local dielectric variations on the polarization conversion rps response of ordered nickel nanowires embedded in an alumina matrix. When considering local changes, we observe a non-monotonous behavior of the rps, its intensity unusually modified far beyond to what it is expected for a monotonous change of the whole refractive index of the embedding medium. This is related to the local redistribution of the electromagnetic field when a localized surface plasmon is excited. This finding may be employed to develop and improve new biosensing magnetoplasmonic devices

    Transforming Growth Factor Beta 2 and Heme Oxygenase 1 Genes Are Risk Factors for the Cerebral Malaria Syndrome in Angolan Children

    Get PDF
    BACKGROUND: Cerebral malaria (CM) represents a severe outcome of the Plasmodium falciparum infection. Recent genetic studies have correlated human genes with severe malaria susceptibility, but there is little data on genetic variants that increase the risk of developing specific malaria clinical complications. Nevertheless, susceptibility to experimental CM in the mouse has been linked to host genes including Transforming Growth Factor Beta 2 (TGFB2) and Heme oxygenase-1 (HMOX1). Here, we tested whether those genes were governing the risk of progressing to CM in patients with severe malaria syndromes. METHODOLOGY/PRINCIPAL FINDINGS: We report that the clinical outcome of P. falciparum infection in a cohort of Angolan children (n = 430) correlated with nine TGFB2 SNPs that modify the risk of progression to CM as compared to other severe forms of malaria. This genetic effect was explained by two haplotypes harboring the CM-associated SNPs (Pcorrec. = 0.035 and 0.036). In addition, one HMOX1 haplotype composed of five CM-associated SNPs increased the risk of developing the CM syndrome (Pcorrec. = 0.002) and was under-transmitted to children with uncomplicated malaria (P = 0.036). Notably, the HMOX1-associated haplotype conferred increased HMOX1 mRNA expression in peripheral blood cells of CM patients (P = 0.012). CONCLUSIONS/SIGNIFICANCE: These results represent the first report on CM genetic risk factors in Angolan children and suggest the novel hypothesis that genetic variants of the TGFB2 and HMOX1 genes may contribute to confer a specific risk of developing the CM syndrome in patients with severe P. falciparum malaria. This work may provide motivation for future studies aiming to replicate our findings in larger populations and to confirm a role for these genes in determining the clinical course of malaria

    Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe

    Get PDF
    The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range

    Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms

    Full text link
    [EN] We report zero-th and high-order acoustic Bessel beams with broad depth-of-field generated using acoustic holograms. While the transverse field distribution of Bessel beams generated using traditional passive methods is correctly described by a Bessel function, these methods present a common drawback: the axial distribution of the field is not constant, as required for ideal Bessel beams. In this work, we experimentally, numerically and theoretically report acoustic truncated Bessel beams of flat-intensity along their axis in the ultrasound regime using phase-only holograms. In particular, the beams present a uniform field distribution showing an elongated focal length of about 40 wavelengths, while the transverse width of the beam remains smaller than 0.7 wavelengths. The proposed acoustic holograms were compared with 3D-printed fraxicons, a blazed version of axicons. The performance of both phase-only holograms and fraxicons is studied and we found that both lenses produce Bessel beams in a wide range of frequencies. In addition, high-order Bessel beam were generated. We report first order Bessel beams that show a clear phase dislocation along their axis and a vortex with single topological charge. The proposed method may have potential applications in ultrasonic imaging, biomedical ultrasound and particle manipulation applications using passive lenses.This work was supported by the Spanish Ministry of Economy and Innovation (MINECO) through Project TEC2016-80976-R. NJ and SJ acknowledge financial support from Generalitat Valenciana through grants APOSTD/2017/042, ACIF/2017/045 and GV/2018/11. FC acknowledges financial support from Agencia Valenciana de la Innovacio through grant INNCON00/18/9 and European Regional Development Fund (IDIFEDER/2018/022).Jiménez-Gambín, S.; Jimenez, N.; Benlloch Baviera, JM.; Camarena Femenia, F. (2019). Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms. Scientific Reports. 9:1-13. https://doi.org/10.1038/s41598-019-56369-zS1139Durnin, J. Exact solutions for nondiffracting beams. i. the scalar theory. J. Opt. Soc. Am. A 4, 651 (1987).Durnin, J., Miceli, J. Jr & Eberly, J. Diffraction-free beams. Physical review letters 58, 1499 (1987).Chu, X. Analytical study on the self-healing property of Bessel beam. Eur. Phys. J. D 66, 259 (2012).McLeod, E., Hopkins, A. B. & Arnold, C. B. Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens. Opt. Lett. 31, 3155 (2006).Li, Z., Alici, K. B., Caglayan, H. & Ozbay, E. Generation of an axially asymmetric Bessel-like beam from a metallic subwavelength aperture. Phys. Rev. Lett. 102, 143901 (2009).Fahrbach, F. & Rohrbach, A. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat. Commun. 3, 632 (2011).Lu, J.-y, Zou, H. & Greenleaf, J. F. Biomedical ultrasound beam forming. Ultrasound in medicine & biology 20, 403–428 (1994).Marston, P. L. Scattering of a Bessel beam by a sphere. J. Acous. Soc. Am. 121, 753 (2007).Marston, P. L. Scattering of a Bessel beam by a sphere: Ii. helicoidal case and spherical shell example. The Journal of the Acoustical Society of America 124, 2905–2910 (2008).Lu, J. & Greenleaf, F. Ultrasonic nondiffracting transducer for medical imaging. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 37, 438 (1990).Lu, J.-Y. & Greenleaf, J. F. Pulse-echo imaging using a nondiffracting beam transducer. Ultrasound in medicine & biology 17, 265–281 (1991).Lu, J.-y, Song, T.-K., Kinnick, R. R. & Greenleaf, J. F. In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams. IEEE transactions on medical imaging 12, 819–829 (1993).Lu, J.-y, Xu, X.-L., Zou, H. & Greenleaf, J. F. Application of Bessel beam for doppler velocity estimation. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 42, 649–662 (1995).Nabavizadeh, A., Greenleaf, J. F., Fatemi, M. & Urban, M. W. Optimized shear wave generation using hybrid beamforming methods. Ultrasound in medicine & biology 40, 188–199 (2014).Marston, P. L. Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. The Journal of the Acoustical Society of America 120, 3518–3524 (2006).Marston, P. L. Negative axial radiation forces on solid spheres and shells in a Bessel beam. The Journal of the Acoustical Society of America 122, 3162–3165 (2007).Marston, P. L. Radiation force of a helicoidal Bessel beam on a sphere. The Journal of the Acoustical Society of America 125, 3539–3547 (2009).Thomas, J.-L. & Marchiano, R. Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. Physical review letters 91, 244302 (2003).Volke-Sepúlveda, K., Santillán, A. O. & Boullosa, R. R. Transfer of angular momentum to matter from acoustical vortices in free space. Phys. Rev. Lett. 100, 024302 (2008).Zhang, L. & Marston, P. L. Geometrical interpretation of negative radiation forces of acoustical Bessel beams on spheres. Physical Review E 84, 035601 (2011).Courtney, C. R. et al. Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields. Applied Physics Letters 102, 123508 (2013).Hong, Z., Zhang, J. & Drinkwater, B. W. Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett. 114, 214301 (2015).Baresch, D., Thomas, J.-L. &Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers. Phys. Rev. Lett. 116 (2016).Marzo, A., Caleap, M. & Drinkwater, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of mie particles. Phys. Rev. Lett. 120, 044301 (2018).Li, Y. et al. Acoustic radiation torque of an acoustic-vortex spanner exerted on axisymmetric objects. Applied Physics Letters 112, 254101 (2018).Riaud, A., Baudoin, M., Thomas, J.-L. & Matar, O. B. Cyclones and attractive streaming generated by acoustical vortices. Physical Review E 90, 013008 (2014).Shi, C., Dubois, M., Wang, Y. & Zhang, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proceedings of the National Academy of Sciences 114, 7250–7253 (2017).Jiang, X., Liang, B., Cheng, J.-C. & Qiu, C.-W. Twisted acoustics: metasurface-enabled multiplexing and demultiplexing. Advanced Materials 30, 1800257 (2018).Hsu, D., Margetan, F. & Thompson, D. O. Bessel beam ultrasonic transducer: fabrication method and experimental results. Appl. Phys. Lett. 55, 2066 (1989).Campbell, J. A. & Soloway, S. Generation of a nondiffracting beam with frequency-independent beamwidth. The Journal of the Acoustical Society of America 88, 2467–2477 (1990).Masuyama, H., Yokoyama, T., Nagai, K. & Mizutani, K. Generation of Bessel beam from equiamplitude-driven annular transducer array consisting of a few elements. Jpn. J. Appl. Phys. 38, 3080 (1999).Fjield, T., Fan, X. & Hynynen, K. A parametric study of the concentric-ring transducer design for mri guided ultrasound surgery. J. Acoust. Soc. Am. 100, 1220 (1996).Chillara, V. K., Pantea, C. & Sinha, D. N. Low-frequency ultrasonic Bessel-like collimated beam generation from radial modes of piezoelectric transducers. Applied Physics Letters 110, 064101 (2017).Burckhardt, C., Hoffmann, H. & Grandchamp, P.-A. Ultrasound axicon: A device for focusing over a large depth. The Journal of the Acoustical Society of America 54, 1628–1630 (1973).Foster, F., Patterson, M., Arditi, M. & Hunt, J. The conical scanner: a two transducer ultrasound scatter imaging technique. Ultrasonic imaging 3, 62–82 (1981).McLeod, J. H. The axicon: A new type of optical element. J. Opt. Soc. Am. 44, 592 (1954).Arlt, J. & Dholakia, K. Generation of high-order Bessel beams by use of an axicon. Optics Communications 177, 297–301 (2000).Golub, I. Fresnel axicon. Optics letters 31, 1890–1892 (2006).Lirette, R. & Mobley, J. Broadband wave packet dynamics of minimally diffractive ultrasonic fields from axicon and stepped fraxicon lenses. The Journal of the Acoustical Society of America 146, 103–108 (2019).Jiménez, N. et al. Acoustic Bessel-like beam formation by an axisymmetric grating. Europhys. Lett. 106, 24005 (2014).Xu, Z., Xu, W., Qian, M., Cheng, Q. & Liu, X. A flat acoustic lens to generate a Bessel-like beam. Ultrasonics 80, 66–71 (2017).Li, Y., Liang, B., Gu, Z.-M., Zou, X.-Y. & Cheng, J.-C. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Scientific Reports 3, 2546 (2013).Nye, J. & Berry, M. Dislocations in wave trains. Proc. R. Soc. London, Ser. A 336, 165–190 (1974).Jiménez, N. et al. Formation of high-order acoustic Bessel beams by spiral diffraction gratings. Physical Review E 94, 053004 (2016).Wang, T. et al. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Applied Physics Letters 109, 123506 (2016).Jia, Y.-R., Wei, Q., Wu, D.-J., Xu, Z. & Liu, X.-J. Generation of fractional acoustic vortex with a discrete archimedean spiral structure plate. Applied Physics Letters 112, 173501 (2018).Jiménez, N., Romero-Garca, V., Garca-Raffi, L. M., Camarena, F. & Staliunas, K. Sharp acoustic vortex focusing by fresnel-spiral zone plates. Applied Physics Letters 112, 204101 (2018).Baudoin, M. et al. Folding a focalized acoustical vortex on a flat holographic transducer: miniaturized selective acoustical tweezers. Science advances 5, eaav1967 (2019).Muelas-Hurtado, R. D., Ealo, J. L., Pazos-Ospina, J. F. & Volke-Sepúlveda, K. Acoustic analysis of a broadband spiral source for the simultaneous generation of multiple Bessel vortices in air. The Journal of the Acoustical Society of America 144, 3252–3261 (2018).Muelas-Hurtado, R. D., Ealo, J. L., Pazos-Ospina, J. F. & Volke-Sepúlveda, K. Generation of multiple vortex beam by means of active diffraction gratings. Applied Physics Letters 112, 084101 (2018).Wunenburger, R., Lozano, J. I. V. & Brasselet, E. Acoustic orbital angular momentum transfer to matter by chiral scattering. New Journal of Physics 17, 103022 (2015).Terzi, M., Tsysar, S., Yuldashev, P., Karzova, M. & Sapozhnikov, O. Generation of a vortex ultrasonic beam with a phase plate with an angular dependence of the thickness. Moscow University Physics Bulletin 72, 61–67 (2017).Hefner, B. T. & Marston, P. L. An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. Jour. Acous. Soc. Am. 106, 3313–3316 (1999).Ealo, J. L., Prieto, J. C. & Seco, F. Airborne ultrasonic vortex generation using flexible ferroelectrets. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 58, 1651–1657 (2011).Naify, C. J. et al. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Applied Physics Letters 108, 223503 (2016).Ye, L. et al. Making sound vortices by metasurfaces. AIP Advances 6, 085007 (2016).Jiang, X., Li, Y., Liang, B., Cheng, J.-C. & Zhang, L. Convert acoustic resonances to orbital angular momentum. Physical review letters 117, 034301 (2016).Esfahlani, H., Lissek, H. & Mosig, J. R. Generation of acoustic helical wavefronts using metasurfaces. Physical Review B 95, 024312 (2017).Jiménez-Gambn, S., Jiménez, N., Benlloch, J. M. & Camarena, F. Holograms to focus arbitrary ultrasonic fields through the skull. Physical Review Applied 12, 014016 (2019).Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M. & Aubry, J.-F. 3d-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Physics in Medicine & Biology 63, 025026 (2018).Ferri, M. et al. On the evaluation of the suitability of the materials used to 3d print holographic acoustic lenses to correct transcranial focused ultrasound aberrations. Polymers 11, 1521 (2019).Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518 (2016).Brown, M. D., Cox, B. T. & Treeby, B. E. Design of multi-frequency acoustic kinoforms. Applied Physics Letters 111, 244101 (2017).Brown, M., Nikitichev, D., Treeby, B. & Cox, B. Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles. Applied Physics Letters 110, 094102 (2017).Zhu, Y. et al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nature communications 9, 1632 (2018).Brown, M. D. Phase and amplitude modulation with acoustic holograms. Applied Physics Letters 115, 053701 (2019).Jiménez, N., Romero-Garca, V., Pagneux, V. & Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B 95, 014205 (2017).Tsang, P. W. M. & Poon, T.-C. Novel method for converting digital fresnel hologram to phase-only hologram based on bidirectional error diffusion. Optics Express 21, 23680–23686 (2013).Soret, J. Ueber die durch kreisgitter erzeugten diffractionsphänomene. Annalen der Physik 232, 99–113 (1875).Turunen, J., Vasara, A. & Friberg, A. T. Holographic generation of diffraction-free beams. Applied Optics 27, 3959–3962 (1988).Vasara, A., Turunen, J. & Friberg, A. T. Realization of general nondiffracting beams with computer-generated holograms. JOSA A 6, 1748–1754 (1989).Cunningham, K. B. & Hamilton, M. F. Bessel beams of finite amplitude in absorbing fluids. J. Acous. Soc. Am. 108, 519 (2000).Ding, D. & Y. Lu, J. Higher-order harmonics of limited diffraction Bessel beams. J. Acous. Soc. Am. 107, 1212 (2000).Skeldon, K., Wilson, C., Edgar, M. & Padgett, M. An acoustic spanner and its associated rotational Doppler shift. New J. Phys. 10, 013018 (2008).Wu, J. Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991).Zhang, L. & Marston, P. L. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Physical Review E 84, 065601 (2011).Yoon, C., Kang, B. J., Lee, C., Kim, H. H. & Shung, K. K. Multi-particle trapping and manipulation by a high-frequency array transducer. Appl. Phys. Lett. 105, 214103 (2014).Marzo, A. et al. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 6 (2015).Blackstock, D. T. Fundamentals of physical acoustics (John Wiley & Sons, 2000).Treeby, B. E. & Cox, B. Modeling power law absorption and dispersion for acoustic propagation using the fractional laplacian. The Journal of the Acoustical Society of America 127, 2741–2748 (2010).Treeby, B. E., Jaros, J., Rendell, A. P. & Cox, B. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. The Journal of the Acoustical Society of America 131, 4324–4336 (2012).Jiménez, N. et al. Time-domain simulation of ultrasound propagation in a tissue-like medium based on the resolution of the nonlinear acoustic constitutive relations. Acta Acustica united with Acustica 102, 876–892 (2016)

    G6PD polymorphisms and hemolysis after antimalarial treatment with low single-dose primaquine: a pooled analysis of six African clinical trials

    Get PDF
    Primaquine (PQ) is an antimalarial drug with the potential to reduce malaria transmission due to its capacity to clear mature Plasmodium falciparum gametocytes in the human host. However, the large-scale roll-out of PQ has to be counterbalanced by the additional risk of drug-induced hemolysis in individuals suffering from Glucose-6-phospate dehydrogenase (G6PD) deficiency, a genetic condition determined by polymorphisms on the X-linked G6PD gene. Most studies on G6PD deficiency and PQ-associated hemolysis focused on the G6PD A- variant, a combination of the two single nucleotide changes G202A (rs1050828) and A376G (rs1050829), although other polymorphisms may play a role. In this study, we tested the association of 20 G6PD single nucleotide polymorphisms (SNPs) with hemolysis measured seven days after low single dose of PQ given at the dose of 0.1 mg/kg to 0.75 mg/kg in 957 individuals from 6 previously published clinical trials investigating the safety and efficacy of this drug spanning five African countries. After adjusting for inter-study effects, age, gender, baseline hemoglobin level, PQ dose, and parasitemia at screening, our analysis showed putative association signals from the common G6PD mutation, A376G [−log (p-value) = 2.44] and two less-known SNPs, rs2230037 [−log (p-value] = 2.60), and rs28470352 [−log (p-value) = 2.15]; A376G and rs2230037 were in very strong linkage disequilibrium with each other (R = 0.978). However, when the effects of these SNPs were included in the same regression model, the subsequent associations were in the borderline of statistical significance. In conclusion, whilst a role for the A- variant is well established, we did not observe an important additional role for other G6PD polymorphisms in determining post-treatment hemolysis in individuals treated with low single-dose PQ. 10 10 10

    Respostas cardio-respiratórias em pacientes com traumatismo raquimedular Cardiorespiratory responses of patients with spinal cord injuries

    No full text
    O objetivo desta pesquisa foi investigar as variáveis cardio-respiratórias (Pa, FC, VO2, VCO2 e Ve) durante a Estimulação Elétrica Neuromuscular (EENM) do quadríceps em portadores de lesão medular. Participaram da pesquisa dez pacientes (cinco paraplégicos e cinco tetraplégicos). O protocolo do teste consistiu em 10 minutos de repouso, 20 minutos de EENM dos quadriceps e 10 minutos de recuperação. Durante a EENM foram constatados baixos valores de VO2 e VCO2. Os paraplégicos apresentaram rápida cinética dos gases e os tetraplégicos lenta cinética dos gases. Houve o aumento da Pa sistólica e da FC. Ainda, os valores das variáveis cardio-respiratórias foram inversamente relatadas para o nível de lesão, ou seja, quanto maior o nível de lesão, menor os valores. Portanto, a maioria dos pacientes apresentaram algumas limitações nas respostas cardio-respiratórias, indicando realização de exercício exaustivo, mas apresentaram capacidade de realização de exercício induzido artificialmente, possivelmente devido aos benefícios da EENM.<br>The objective of this study was to investigate cardiorespiratory responses (Heart Rate, Blood Pressure, VO2, VCO2 e Ve) to Neuromuscular Electrical Stimulation (NMES) of the quadriceps in patients with spinal cord injury. Ten patients (five paraplegics and five tetraplegics) participated in this study. The protocol of the test consisted of ten minutes of rest, twenty minutes of NMES of the quadriceps and ten minutes of recovery. The findings in this study indicated that, during NMES, the patients demonstrated low levels of VO2 and VCO2 and slow gas kinetics for tetraplegic individuals, and a fast gas kinetics for paraplegic individuals. Moreover, there were increases in blood pressure and heart rate. Cardiorespiratory responses increased with descending spinal cord injury level, meaning that the more severe the lesion, the lower the values. Therefore, most of the patients presented some limitations in cardiorespiratory responses, indicating the performance of exhaustive exercise, but the use of NMES can elicit improvements in exercise tolerance due to its benefits
    corecore