12 research outputs found

    Short-Term, Intermittent Fasting Induces Long-Lasting Gut Health and TOR-Independent Lifespan Extension

    Get PDF
    Intermittent fasting (IF) can improve function and health during aging in laboratory model organisms, but the mechanisms at work await elucidation. We subjected fruit flies (Drosophila melanogaster) to varying degrees of IF and found that just one month of a 2-day fed:5-day fasted IF regime at the beginning of adulthood was sufficient to extend lifespan. This long-lasting, beneficial effect of early IF was not due to reduced fecundity. Starvation resistance and resistance to oxidative and xenobiotic stress were increased after IF. Early-life IF also led to higher lipid content in 60-day-old flies, a potential explanation for increased longevity. Guts of flies 40 days post-IF showed a significant reduction in age-related pathologies and improved gut barrier function. Improved gut health was also associated with reduced relative bacterial abundance. Early IF thus induced profound long-term changes. Pharmacological and genetic epistasis analysis showed that IF acted independently of the TOR pathway because rapamycin and IF acted additively to extend lifespan, and global expression of a constitutively active S6K did not attenuate the IF-induced lifespan extension. We conclude that short-term IF during early life can induce long-lasting beneficial effects, with robust increase in lifespan in a TOR-independent manner, probably at least in part by preserving gut health

    Klf15 Is Critical for the Development and Differentiation of Drosophila Nephrocytes

    Get PDF
    Insect nephrocytes are highly endocytic scavenger cells that represent the only invertebrate model for the study of human kidney podocytes. Despite their importance, nephrocyte development is largely uncharacterised. This work tested whether the insect ortholog of mammalian Kidney Krüppel-Like Factor (Klf15), a transcription factor required for mammalian podocyte differentiation, was required for insect nephrocyte development. It was found that expression of Drosophila Klf15 (dKlf15, previously known as Bteb2) was restricted to the only two nephrocyte populations in Drosophila, the garland cells and pericardial nephrocytes. Loss of dKlf15 function led to attrition of both nephrocyte populations and sensitised larvae to the xenotoxin silver nitrate. Although pericardial nephrocytes in dKlf15 loss of function mutants were specified during embryogenesis, they failed to express the slit diaphragm gene sticks and stones and did not form slit diaphragms. Conditional silencing of dKlf15 in adults led to reduced surface expression of the endocytic receptor Amnionless and loss of in vivo scavenger function. Over-expression of dKlf15 increased nephrocyte numbers and rescued age-dependent decline in nephrocyte function. The data place dKlf15 upstream of sns and Amnionless in a nephrocyte-restricted differentiation pathway and suggest dKlf15 expression is both necessary and sufficient to sustain nephrocyte differentiation. These findings explain the physiological relevance of dKlf15 in Drosophila and imply that the role of KLF15 in human podocytes is evolutionarily conserve

    Hoverfly locomotor activity is resilient to external influence and intrinsic factors

    No full text
    Hoverflies are found across the globe, with approximately 6000 species described worldwide. Many hoverflies are being used in agriculture and some are emerging as model species for laboratory experiments. As such it is valuable to know more about their activity. Like many other dipteran flies, Eristalis hoverflies have been suggested to be strongly diurnal, but this is based on qualitative visualization by human observers. To quantify how hoverfly activity depends on internal and external factors, we here utilize a locomotor activity monitoring system. We show that Eristalis hoverflies are active during the entire light period when exposed to a 12 h light:12 h dark cycle, with a lower activity if exposed to light during the night. We show that the hoverflies' locomotor activity is stable over their lifetime and that it does not depend on the diet provided. Surprisingly, we find no difference in activity between males and females, but the activity is significantly affected by the sex of an accompanying conspecific. Finally, we show that female hoverflies are more resilient to starvation than males. In summary, Eristalis hoverflies are resilient to a range of internal and external factors, supporting their use in long-term laboratory experiments

    An overview of two decades of diet restriction studies using Drosophila

    No full text
    corecore