1,916 research outputs found

    Patterns of Reproductive Isolation in Toads

    Get PDF
    Understanding the general features of speciation is an important goal in evolutionary biology, and despite significant progress, several unresolved questions remain. We analyzed an extensive comparative dataset consisting of more than 1900 crosses between 92 species of toads to infer patterns of reproductive isolation. This unique dataset provides an opportunity to examine the strength of reproductive isolation, the development and sex ratios of hybrid offspring, patterns of fertility and infertility, and polyploidization in hybrids all in the context of genetic divergence between parental species. We found that the strength of intrinsic postzygotic isolation increases with genetic divergence, but relatively high levels of divergence are necessary before reproductive isolation is complete in toads. Fertilization rates were not correlated to genetic divergence, but hatching success, the number of larvae produced, and the percentage of tadpoles reaching metamorphosis were all inversely related with genetic divergence. Hybrids between species with lower levels of divergence developed to metamorphosis, while hybrids with higher levels of divergence stopped developing in gastrula and larval stages. Sex ratios of hybrid offspring were biased towards males in 70% of crosses and biased towards females in 30% of crosses. Hybrid females from crosses between closely related species were completely fertile, while approximately half (53%) of hybrid males were sterile, with sterility predicted by genetic divergence. The degree of abnormal ploidy in hybrids was positively related to genetic divergence between parental species, but surprisingly, polyploidization had no effect on patterns of asymmetrical inviability. We discuss explanations for these patterns, including the role of Haldane's rule in toads and anurans in general, and suggest mechanisms generating patterns of reproductive isolation in anurans

    Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us

    Full text link
    Supernova remnants (SNRs) arise from the interaction between the ejecta of a supernova (SN) explosion and the surrounding circumstellar and interstellar medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However, to understand SNRs as a whole, large samples of SNRs must be assembled and studied. Here, we describe the radio, optical, and X-ray techniques which have been used to identify and characterize almost 300 Galactic SNRs and more than 1200 extragalactic SNRs. We then discuss which types of SNRs are being found and which are not. We examine the degree to which the luminosity functions, surface-brightness distributions and multi-wavelength comparisons of the samples can be interpreted to determine the class properties of SNRs and describe efforts to establish the type of SN explosion associated with a SNR. We conclude that in order to better understand the class properties of SNRs, it is more important to study (and obtain additional data on) the SNRs in galaxies with extant samples at multiple wavelength bands than it is to obtain samples of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin. Final version available at https://doi.org/10.1007/978-3-319-20794-0_90-

    Classification of non-Riemannian doubled-yet-gauged spacetime

    Get PDF
    Assuming O(D,D)\mathbf{O}(D,D) covariant fields as the `fundamental' variables, Double Field Theory can accommodate novel geometries where a Riemannian metric cannot be defined, even locally. Here we present a complete classification of such non-Riemannian spacetimes in terms of two non-negative integers, (n,nˉ)(n,\bar{n}), 0n+nˉD0\leq n+\bar{n}\leq D. Upon these backgrounds, strings become chiral and anti-chiral over nn and nˉ\bar{n} directions respectively, while particles and strings are frozen over the n+nˉn+\bar{n} directions. In particular, we identify (0,0)(0,0) as Riemannian manifolds, (1,0)(1,0) as non-relativistic spacetime, (1,1)(1,1) as Gomis-Ooguri non-relativistic string, (D1,0)(D{-1},0) as ultra-relativistic Carroll geometry, and (D,0)(D,0) as Siegel's chiral string. Combined with a covariant Kaluza-Klein ansatz which we further spell, (0,1)(0,1) leads to Newton-Cartan gravity. Alternative to the conventional string compactifications on small manifolds, non-Riemannian spacetime such as D=10D=10, (3,3)(3,3) may open a new scheme of the dimensional reduction from ten to four.Comment: 1+41 pages; v2) Refs added; v3) Published version; v4) Sign error in (2.51) correcte

    Scale invariance and universality of force networks in static granular matter

    Full text link
    Force networks form the skeleton of static granular matter. They are the key ingredient to mechanical properties, such as stability, elasticity and sound transmission, which are of utmost importance for civil engineering and industrial processing. Previous studies have focused on the global structure of external forces (the boundary condition), and on the probability distribution of individual contact forces. The disordered spatial structure of the force network, however, has remained elusive so far. Here we report evidence for scale invariance of clusters of particles that interact via relatively strong forces. We analyzed granular packings generated by molecular dynamics simulations mimicking real granular matter; despite the visual variation, force networks for various values of the confining pressure and other parameters have identical scaling exponents and scaling function, and thus determine a universality class. Remarkably, the flat ensemble of force configurations--a simple generalization of equilibrium statistical mechanics--belongs to the same universality class, while some widely studied simplified models do not.Comment: 15 pages, 4 figures; to appear in Natur

    Criminal and Noncriminal Psychopathy: The Devil is in the Detail

    Get PDF
    Brooks, NS ORCiD: 0000-0003-1784-099XPsychopathy is prevalent and problematic in criminal populations, but is also found to be present in noncriminal populations. In 1992, Robert Hare declared that psychopaths may also “be found in the boardroom”, which has since been followed by an interest in the issue of noncriminal, or even successful, psychopathy. In this chapter, the paradox of criminal and noncriminal psychopathy is discussed with specific attention given to the similarities and differences that account for psychopathic personality across contexts. That psychopathy is a condition typified by a constellation of traits and behaviours requires wider research across diverse populations, and thus the streams of research related to criminal and noncriminal psychopathy are presented and the implications of these contrasting streams are explored

    Contact Manifolds, Contact Instantons, and Twistor Geometry

    Full text link
    Recently, Kallen and Zabzine computed the partition function of a twisted supersymmetric Yang-Mills theory on the five-dimensional sphere using localisation techniques. Key to their construction is a five-dimensional generalisation of the instanton equation to which they refer as the contact instanton equation. Subject of this article is the twistor construction of this equation when formulated on K-contact manifolds and the discussion of its integrability properties. We also present certain extensions to higher dimensions and supersymmetric generalisations.Comment: v3: 28 pages, clarifications and references added, version to appear in JHE

    Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells

    Get PDF
    Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer

    Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European society of cardiology and endorsed by the European society of intensive care medicine

    Get PDF
    Patients with acute heart failure (AHF) require urgent in-hospital treatment for relief of symptoms. The main reason for hospitalization is congestion, rather than low cardiac output. Although congestion is associated with a poor prognosis, many patients are discharged with persistent signs and symptoms of congestion and/or a high left ventricular filling pressure. Available data suggest that a pre-discharge clinical assessment of congestion is often not performed, and even when it is performed, it is not done systematically because no method to assess congestion prior to discharge has been validated. Grading congestion would be helpful for initiating and following response to therapy. We have reviewed a variety of strategies to assess congestion which should be considered in the care of patients admitted with HF. We propose a combination of available measurements of congestion. Key elements in the measurement of congestion include bedside assessment, laboratory analysis, and dynamic manoeuvres. These strategies expand by suggesting a routine assessment of congestion and a pre-discharge scoring system. A point system is used to quantify the degree of congestion. This score offers a new instrument to direct both current and investigational therapies designed to optimize volume status during and after hospitalization. In conclusion, this document reviews the available methods of evaluating congestion, provides suggestions on how to properly perform these measurements, and proposes a method to quantify the amount of congestion presen

    Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus

    Get PDF
    Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses
    corecore