13 research outputs found

    Anti-cancer activities of allyl isothiocyanate and its conjugated silicon quantum dots

    Get PDF
    Allyl isothiocyanate (AITC), a dietary phytochemical in some cruciferous vegetables, exhibits promising anticancer activities in many cancer models. However, previous data showed AITC to have a biphasic effect on cell viability, DNA damage and migration in human hepatoma HepG2 cells. Moreover, in a 3D co-culture of HUVEC with pericytes, it inhibited tube formation at high doses but promoted this at low doses, which confirmed its biphasic effect on angiogenesis. siRNA knockdown of Nrf2 and glutathione inhibition abolished the stimulation effect of AITC on cell migration and DNA damage. The biological activity of a novel AITC-conjugated silicon quantum dots (AITC-SiQDs) has been investigated for the first time. AITC-SiQDs showed similar anti-cancer properties to AITC at high doses while avoiding the low doses stimulation effect. In addition, AITC-SiQDs showed a lower and long-lasting activation of Nrf2 translocation into nucleus which correlated with their levels of cellular uptake, as detected by the intrinsic fluorescence of SiQDs. ROS production could be one of the mechanisms behind the anti-cancer effect of AITC-SiQDs. These data provide novel insights into the biphasic effect of AITC and highlight the application of nanotechnology to optimize the therapeutic potential of dietary isothiocyanates in cancer treatment

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Measurement of Thermoelectric Properties of Phenylacetylene-Capped Silicon Nanoparticles and Their Potential in Fabrication of Thermoelectric Materials

    No full text
    Silicon is a highly attractive material for the fabrication of thermoelectric materials. Nanostructured silicon materials, such as silicon nanowires (SiNWs), show great potential as they show low thermal conductivities due to efficient phonon scattering but similar electrical conductivities to bulk silicon. Silicon nanoparticles (SiNPs) are easier to synthesize and show a greater number of surface defects, which suggests that more efficient phonon scattering can be achieved, but these materials also show low electrical conductivity due to defects within the materials unless pressed at high temperatures (1100°C). Conjugated capping layers show the potential to bridge these defects, giving higher conductivity without the need for this process. Phenylacetylene-capped SiNPs are synthesized via the micelle reduction method and pressed into a pellet. Measurements of the electrical conductivity, Seebeck coefficient, and thermal conductivity were taken. The results show that the material produced from these particles shows a relatively high Seebeck coefficient (3228.84 μV K−1) which would have a positive effect on the figure of merit (ZT). A respectable electrical conductivity (18.1 S m−1) and a low thermal conductivity (0.1 W m−1 K−1) confirm the potential of using conjugated molecules as a way of cross-linking between nanoparticles in a bulk material fabricated from SiNPs. These results give a figure of merit of 0.57, which is comparable to better established thermoelectric materials

    The effect of alkyl chain length on the level of capping of silicon nanoparticles produced by a one-pot synthesis route based on the chemical reduction of micelle

    No full text
    Silicon nanoparticles (SiNPs) can be synthesized by a variety of methods. In many cases these routines are non-scalable with low product yields or employ toxic reagents. One way to overcome these drawbacks is to use one-pot synthesis based on the chemical reduction of micelles. In the following study trichloroalkylsilanes of differing chain lengths were used as a surfactant, and the level of capping, surface bonding and size of the nanoparticles formed has been investigated. FTIR results show that the degree of alkyl capping for SiNPs with different capping layers was constant, although SiNPs bound with shorter chains display a much higher level of Si-O owing to the reaction of the ethanol used in the method with uncapped sites on the particle. SiNPs with longer chain length capping show a sharp Si-H peak on the FTIR, these were heated at reflux with the corresponding 1-alkene to fully cap these particles, resulting in a reduction/disappearance of this peak with a minimal change in the intensity of the Si-O peak. Other techniques used to analyze the surface bonding and composition, XPS, H-NMR, and TEM/EDX, show that alkyl-capped SiNPs have been produced using this method. The optical properties showed no significant changes between the different capped SiNPs
    corecore