384 research outputs found

    Gluon Scattering Amplitudes in Finite Temperature Gauge/Gravity Dualities

    Full text link
    We examine the gluon scattering amplitude in N=4 super Yang-Mills at finite temperature with nonzero R-charge densities, and in Non-Commutative gauge theory at finite temperature. The gluon scattering amplitude is defined as a light-like Wilson loop which lives at the horizon of the T-dual black holes of the backgrounds we consider. We study in detail a special amplitude, which corresponds to forward scattering of a low energy gluon off a high energy one. For this kinematic configuration in the considered backgrounds, we find the corresponding minimal surface which is directly related to the gluon scattering amplitude. We find that for increasing the chemical potential or the non-commutative parameter, the on-shell action corresponding to our Wilson loop in the T-dual space decreases. For all of our solutions the length of the short side of the Wilson loop is constrained by an upper bound which depends on the temperature, the R-charge density and the non-commutative parameter. Due to this constraint, in the limit of zeroth temperature our approach breaks down since the upper bound goes to zero, while by keeping the temperature finite and letting the chemical potential or the non-commutative parameter to approach to zero the limit is smooth.Comment: 30 pages, 16 figures, minor corrections (plus improved numerical computation for the non-commutative case

    Three-point correlators for giant magnons

    Get PDF
    Three-point correlation functions in the strong-coupling regime of the AdS/CFT correspondence can be analyzed within a semiclassical approximation when two of the vertex operators correspond to heavy string states having large quantum numbers while the third vertex corresponds to a light state with fixed charges. We consider the case where the heavy string states are chosen to be giant magnon solitons with either a single or two different angular momenta, for various different choices of light string states.Comment: 15 pages. Latex. v2: Misprints corrected. Published versio

    Tailoring Three-Point Functions and Integrability II. Weak/strong coupling match

    Full text link
    We compute three-point functions of single trace operators in planar N=4 SYM. We consider the limit where one of the operators is much smaller than the other two. We find a precise match between weak and strong coupling in the Frolov-Tseytlin classical limit for a very general class of classical solutions. To achieve this match we clarify the issue of back-reaction and identify precisely which three-point functions are captured by a classical computation.Comment: 36 pages. v2: figure added, references adde

    More three-point correlators of giant magnons with finite size

    Full text link
    In the framework of the semiclassical approach, we compute the normalized structure constants in three-point correlation functions, when two of the vertex operators correspond to heavy string states, while the third vertex corresponds to a light state. This is done for the case when the heavy string states are finite-size giant magnons with one or two angular momenta, and for two different choices of the light state, corresponding to dilaton operator and primary scalar operator. The relevant operators in the dual gauge theory are Tr(F_{\mu\nu}^2 Z^j+...) and Tr(Z^j). We first consider the case of AdS_5 x S^5 and N = 4 super Yang-Mills. Then we extend the obtained results to the gamma-deformed AdS_5 x S^5_\gamma, dual to N = 1 super Yang-Mills theory, arising as an exactly marginal deformation of N = 4 super Yang-Mills.Comment: 14 pages, no figure

    Holographic three-point functions of giant gravitons

    Get PDF
    Working within the AdS/CFT correspondence we calculate the three-point function of two giant gravitons and one pointlike graviton using methods of semiclassical string theory and considering both the case where the giant gravitons wrap an S^3 in S^5 and the case where the giant gravitons wrap an S^3 in AdS_5. We likewise calculate the correlation function in N=4 SYM using two Schur polynomials and a single trace chiral primary. We find that the gauge and string theory results have structural similarities but do not match perfectly, and interpret this in terms of the Schur polynomials' inability to interpolate between dual giant and pointlike gravitons.Comment: 21 page

    Holographic Correlation Functions for Open Strings and Branes

    Full text link
    In this paper, we compute holographically the two-point and three-point functions of giant gravitons with open strings. We consider the maximal giant graviton in S5S^5 and the string configurations corresponding to the ground states of Z=0 and Y=0 open spin chain, and the spinning string in AdS5_5 corresponding to the derivative type impurities in Y=0 or Z=0 open spin chain as well. We treat the D-brane and open string contribution separately and find the corresponding D3-brane and string configurations in bulk which connect the composite operators at the AdS5_5 boundary. We apply a new prescription to treat the string state contribution and find agreements for the two-point functions. For the three-point functions of two giant gravitons with open strings and one certain half-BPS chiral primary operator, we find that the D-brane contributions to structure constant are always vanishing and the open string contribution for the Y=0 ground state is in perfect match with the prediction in the free field limit.Comment: 25 page

    Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics

    Full text link
    The celebrated electronic properties of graphene have opened way for materials just one-atom-thick to be used in the post-silicon electronic era. An important milestone was the creation of heterostructures based on graphene and other two-dimensional (2D) crystals, which can be assembled in 3D stacks with atomic layer precision. These layered structures have already led to a range of fascinating physical phenomena, and also have been used in demonstrating a prototype field effect tunnelling transistor - a candidate for post-CMOS technology. The range of possible materials which could be incorporated into such stacks is very large. Indeed, there are many other materials where layers are linked by weak van der Waals forces, which can be exfoliated and combined together to create novel highly-tailored heterostructures. Here we describe a new generation of field effect vertical tunnelling transistors where 2D tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or CVD-grown graphene. Our devices have unprecedented current modulation exceeding one million at room temperature and can also operate on transparent and flexible substrates

    Correlation functions of three heavy operators - the AdS contribution

    Get PDF
    We consider operators in N=4 SYM theory which are dual, at strong coupling, to classical strings rotating in S^5. Three point correlation functions of such operators factorize into a universal contribution coming from the AdS part of the string sigma model and a state-dependent S^5 contribution. Consequently a similar factorization arises for the OPE coefficients. In this paper we evaluate the AdS universal factor of the OPE coefficients which is explicitly expressed just in terms of the anomalous dimensions of the three operators.Comment: 49 pages, 3 figures; v.2 references corrected; v3: corrected discussion in section 5, results unchange

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore