777 research outputs found
Social cohesion as a real-life phenomenon: assessing the explanatory power of the universalist and particularist perspectives
Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon
The transverse momentum and rapidity distributions of net protons and
negatively charged hadrons have been measured for minimum bias proton-nucleus
and deuteron-gold interactions, as well as central oxygen-gold and
sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net
protons at midrapidity in central nucleus-nucleus collisions increases both
with target mass for sulphur projectiles and with the projectile mass for a
gold target. The shape of the rapidity distributions of net protons forward of
midrapidity for d+Au and central S+Au collisions is similar. The average
rapidity loss is larger than 2 units of rapidity for reactions with the gold
target. The transverse momentum spectra of net protons for all reactions can be
described by a thermal distribution with `temperatures' between 145 +- 11 MeV
(p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The
multiplicity of negatively charged hadrons increases with the mass of the
colliding system. The shape of the transverse momentum spectra of negatively
charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and
central nucleus-nucleus collisions. The mean transverse momentum is almost
constant in the vicinity of midrapidity and shows little variation with the
target and projectile masses. The average number of produced negatively charged
hadrons per participant baryon increases slightly from p+p, p+A to central
S+S,Ag collisions.Comment: 47 pages, submitted to Z. Phys.
System size dependence of strange particle yields and spectra at sqrt(s)=17.3 GeV
Yields and spectra of strange hadrons (K+, K-, phi, Lambda and Antilambda) as
well as of charged pions were measured in near central C+C and Si+Si collisions
at 158 AGeV beam energy with the NA49 detector. Together with earlier data for
p+p, S+S and Pb+Pb reactions the system size dependence can be studied.
Relative strangeness production rises fast and saturates at about 60
participating nucleons; the net hyperon spectra show an increasing shift
towards midrapidity for larger colliding nuclei. An interpretation based on the
formation of coherent systems of increasing volume is proposed. The transverse
mass spectra can be described by a blast wave ansatz. Increasing flow velocity
is accompanied by decreasing temperatures for both kinetic and chemical freeze
out. The increasing gap between inelastic and elastic decoupling leaves space
for rescattering.Comment: 8 pages, 6 figures, Proceedings of the Hot Quarks 2004 worksho
Ego-Splitting and the Transcendental Subject. Kant’s Original Insight and Husserl’s Reappraisal
In this paper, I contend that there are at least two essential traits that commonly define being an I: self-identity and self-consciousness. I argue that they bear quite an odd relation to each other in the sense that self-consciousness seems to jeopardize self-identity. My main concern is to elucidate this issue within the range of the transcendental philosophies of Immanuel Kant and Edmund Husserl. In the first section, I shall briefly consider Kant’s own rendition of the problem of the Egosplitting. My reading of the Kantian texts reveals that Kant himself was aware of this phenomenon but eventually deems it an unexplainable fact. The second part of the paper tackles the same problematic from the standpoint of Husserlian phenomenology. What Husserl’s extensive analyses on this topic bring to light is that the phenomenon of the Ego-splitting constitutes the bedrock not only of his thought but also of every philosophy that works within the framework of transcendental thinking
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
Classical and semi-classical energy conditions
The standard energy conditions of classical general relativity are (mostly)
linear in the stress-energy tensor, and have clear physical interpretations in
terms of geodesic focussing, but suffer the significant drawback that they are
often violated by semi-classical quantum effects. In contrast, it is possible
to develop non-standard energy conditions that are intrinsically non-linear in
the stress-energy tensor, and which exhibit much better well-controlled
behaviour when semi-classical quantum effects are introduced, at the cost of a
less direct applicability to geodesic focussing. In this article we will first
review the standard energy conditions and their various limitations. (Including
the connection to the Hawking--Ellis type I, II, III, and IV classification of
stress-energy tensors). We shall then turn to the averaged, nonlinear, and
semi-classical energy conditions, and see how much can be done once
semi-classical quantum effects are included.Comment: V1: 25 pages. Draft chapter, on which the related chapter of the book
"Wormholes, Warp Drives and Energy Conditions" (to be published by Springer),
will be based. V2: typos fixed. V3: small typo fixe
Azimuthal anisotropy and correlations at large transverse momenta in and Au+Au collisions at = 200 GeV
Results on high transverse momentum charged particle emission with respect to
the reaction plane are presented for Au+Au collisions at =
200 GeV. Two- and four-particle correlations results are presented as well as a
comparison of azimuthal correlations in Au+Au collisions to those in at
the same energy. Elliptic anisotropy, , is found to reach its maximum at
GeV/c, then decrease slowly and remain significant up to
-- 10 GeV/c. Stronger suppression is found in the back-to-back
high- particle correlations for particles emitted out-of-plane compared to
those emitted in-plane. The centrality dependence of at intermediate
is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004
Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV
The results from the STAR Collaboration on directed flow (v_1), elliptic flow
(v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution
of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and
compared with results from other experiments and theoretical models. Results
for identified particles are presented and fit with a Blast Wave model.
Different anisotropic flow analysis methods are compared and nonflow effects
are extracted from the data. For v_2, scaling with the number of constituent
quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and
quark coalescence is discussed.Comment: 26 pages. As accepted by Phys. Rev. C. Text rearranged, figures
modified, but data the same. However, in Fig. 35 the hydro calculations are
corrected in this version. The data tables are available at
http://www.star.bnl.gov/central/publications/ by searching for "flow" and
then this pape
Restoring brain function after stroke - bridging the gap between animals and humans
Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke
Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat
Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention
- …
