26 research outputs found
The role of agonist and antagonist muscles in explaining isometric knee extension torque variation with hip joint angle.
PURPOSE: The biarticular rectus femoris (RF), operating on the ascending limb of the force-length curve, produces more force at longer lengths. However, experimental studies consistently report higher knee extension torque when supine (longer RF length) compared to seated (shorter RF length). Incomplete activation in the supine position has been proposed as the reason for this discrepancy, but differences in antagonistic co-activation could also be responsible due to altered hamstrings length. We examined the role of agonist and antagonist muscles in explaining the isometric knee extension torque variation with changes in hip joint angle. METHOD: Maximum voluntary isometric knee extension torque (joint MVC) was recorded in seated and supine positions from nine healthy males (30.2 ± 7.7 years). Antagonistic torque was estimated using EMG and added to the respective joint MVC (corrected MVC). Submaximal tetanic stimulation quadriceps torque was also recorded. RESULT: Joint MVC was not different between supine (245 ± 71.8 Nm) and seated (241 ± 69.8 Nm) positions and neither was corrected MVC (257 ± 77.7 and 267 ± 87.0 Nm, respectively). Antagonistic torque was higher when seated (26 ± 20.4 Nm) than when supine (12 ± 7.4 Nm). Tetanic torque was higher when supine (111 ± 31.9 Nm) than when seated (99 ± 27.5 Nm). CONCLUSION: Antagonistic co-activation differences between hip positions do not account for the reduced MVC in the supine position. Rather, reduced voluntary knee extensor muscle activation in that position is the major reason for the lower MVC torque when RF is lengthened (hip extended). These findings can assist standardising muscle function assessment and improving musculoskeletal modelling applications
Cell-autonomous and environmental contributions to the interstitial migration of T cells
A key to understanding the functioning of the immune system is to define the mechanisms that facilitate directed lymphocyte migration to and within tissues. The recent development of improved imaging technologies, most prominently multi-photon microscopy, has enabled the dynamic visualization of immune cells in real-time directly within intact tissues. Intravital imaging approaches have revealed high spontaneous migratory activity of T cells in secondary lymphoid organs and inflamed tissues. Experimental evidence points towards both environmental and cell-intrinsic cues involved in the regulation of lymphocyte motility in the interstitial space. Based on these data, several conceptually distinct models have been proposed in order to explain the coordination of lymphocyte migration both at the single cell and population level. These range from “stochastic” models, where chance is the major driving force, to “deterministic” models, where the architecture of the microenvironment dictates the migratory trajectory of cells. In this review, we focus on recent advances in understanding naïve and effector T cell migration in vivo. In addition, we discuss some of the contradictory experimental findings in the context of theoretical models of migrating leukocytes
The restoration of fens in the Netherlands
Item does not contain fulltex
Skeletal muscle ATP turnover and single fibre ATP and PCr content during intense exercise at different muscle temperatures in humans
Peer reviewedPostprin
The reach of gene–culture coevolution in animals
Culture (behaviour based on socially transmitted information) is present in diverse animal species, yet how it interacts with genetic evolution remains largely unexplored. Here, we review the evidence for gene–culture coevolution in animals, especially birds, cetaceans and primates. We describe how culture can relax or intensify selection under different circumstances, create new selection pressures by changing ecology or behaviour, and favour adaptations, including in other species. Finally, we illustrate how, through culturally mediated migration and assortative mating, culture can shape population genetic structure and diversity. This evidence suggests strongly that animal culture plays an important evolutionary role, and we encourage explicit analyses of gene–culture coevolution in nature.Peer reviewe