27 research outputs found

    Gravity with extra dimensions and dark matter interpretation: Phenomenological example via Miyamoto-Nagai galaxy

    Full text link
    A configuration whose density profile coincides with the Newtonian potential for spiral galaxies is constructed from a 4D isotropic metric plus extra dimensional components. A Miyamoto-Nagai ansatz is used to solve Einstein equations. The stable rotation curves of such system are computed and, without fitting techniques, we recover with accuracy the observational data for flat or not asymptotically flat galaxy rotation curves. The density profiles are reconstructed and compared to that obtained from the Newtonian potential.Comment: 10 pages, 10 figures, submitted to Brazilian Journal of Physic

    Search for Dark Matter Annihilation in the Galactic Center with IceCube-79

    Get PDF
    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, \left, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to 41024\simeq 4 \cdot 10^{-24} cm3^3 s1^{-1}, and 2.61023\simeq 2.6 \cdot 10^{-23} cm3^3 s1^{-1} for the νν\nu\overline{\nu} channel, respectively.Comment: 14 pages, 9 figures, Submitted to EPJ-C, added references, extended limit overvie

    Shedding Light on the Galaxy Luminosity Function

    Full text link
    From as early as the 1930s, astronomers have tried to quantify the statistical nature of the evolution and large-scale structure of galaxies by studying their luminosity distribution as a function of redshift - known as the galaxy luminosity function (LF). Accurately constructing the LF remains a popular and yet tricky pursuit in modern observational cosmology where the presence of observational selection effects due to e.g. detection thresholds in apparent magnitude, colour, surface brightness or some combination thereof can render any given galaxy survey incomplete and thus introduce bias into the LF. Over the last seventy years there have been numerous sophisticated statistical approaches devised to tackle these issues; all have advantages -- but not one is perfect. This review takes a broad historical look at the key statistical tools that have been developed over this period, discussing their relative merits and highlighting any significant extensions and modifications. In addition, the more generalised methods that have emerged within the last few years are examined. These methods propose a more rigorous statistical framework within which to determine the LF compared to some of the more traditional methods. I also look at how photometric redshift estimations are being incorporated into the LF methodology as well as considering the construction of bivariate LFs. Finally, I review the ongoing development of completeness estimators which test some of the fundamental assumptions going into LF estimators and can be powerful probes of any residual systematic effects inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy & Astrophysics Review. This version: bring in line with A&AR format requirements, also minor typo corrections made, additional citations and higher rez images adde

    (A)symmetries of weak decays at and near the kinematic endpoint

    Get PDF
    At the kinematic endpoint of zero recoil physical momenta are parallel which leads to symmetries in the decay distributions. We implement this observation for decays of the type A(B1B2)CA \to (B_1 B_2) C by extending the helicity formalism to include an unphysical timelike polarisation. The symmetries of the helicity amplitudes are worked out for a generic dimension six Hamiltonian for a BVB \to V \ell \ell decay type. We obtain \emph{exact} predictions for angular observables, e.g.,for the fraction of longitudinally polarized vector mesons, FL=1/3F_L = 1/3, which may be used to guide experimental analyses. We investigate the vicinity of the endpoint through an expansion in the three momentum of the vector meson. New physics can be searched for in the slope of the observables near the endpoint. Current experimental data on BKB \to K^* \ell \ell decays are found to be in agreement with our predictions within uncertainties. Application to other semileptonic BB and DD decays, including BV+B \to V \ell^+ \ell^-, V=K,ϕ,ρV=K^*,\phi, \rho and BVνB \to V \ell \nu, V=ρ,DV=\rho,D^* is straightforward. For hadronic modes of the types BVppˉ,VΛΛˉ,..B \to V p \bar p, V \Lambda \bar \Lambda, .. and BVππ,VπK,..B \to V \pi \pi, V \pi K, .. endpoint relations apply as long as they are not overwhelmed by sizeable final state interactions between the VV and the hadron pair.Comment: 23pp, 3 figures, v2 to appear in JHEP, minor additions - conclusions unchange

    Search for dark matter annihilation in the Galactic Center with IceCube-79

    Get PDF

    Sex Determination:Why So Many Ways of Doing It?

    Get PDF
    Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination

    Statistical models of morphology predict eye-tracking measures during visual word recognition

    Get PDF
    We studied how statistical models of morphology that are built on different kinds of representational units, i.e., models emphasizing either holistic units or decomposition, perform in predicting human word recognition. More specifically, we studied the predictive power of such models at early vs. late stages of word recognition by using eye-tracking during two tasks. The tasks included a standard lexical decision task and a word recognition task that assumedly places less emphasis on postlexical reanalysis and decision processes. The lexical decision results showed good performance of Morfessor models based on the Minimum Description Length optimization principle. Models which segment words at some morpheme boundaries and keep other boundaries unsegmented performed well both at early and late stages of word recognition, supporting dual- or multiple-route cognitive models of morphological processing. Statistical models based on full forms fared better in late than early measures. The results of the second, multi-word recognition task showed that early and late stages of processing often involve accessing morphological constituents, with the exception of short complex words. Late stages of word recognition additionally involve predicting upcoming morphemes on the basis of previous ones in multimorphemic words. The statistical models based fully on whole words did not fare well in this task. Thus, we assume that the good performance of such models in global measures such as gaze durations or reaction times in lexical decision largely stems from postlexical reanalysis or decision processes. This finding highlights the importance of considering task demands in the study of morphological processing.Peer reviewe
    corecore