115 research outputs found

    Cancer Appetite and Symptom Questionnaire (CASQ) for Brazilian Patients: Cross-Cultural Adaptation and Validation Study

    Get PDF
    Background Appetite and symptoms, conditions generally reported by the patients with cancer, are somewhat challenging for professionals to measure directly in clinical routine (latent conditions). Therefore, specific instruments are required for this purpose. This study aimed to perform a cultural adaptation of the Cancer Appetite and Symptom Questionnaire (CASQ), into Portuguese and evaluate its psychometric properties on a sample of Brazilian cancer patients. Methods This is a validation study with Brazilian cancer patients. The face, content, and construct (factorial and convergent) validities of the Cancer Appetite and Symptom Questionnaire, the study tool, were estimated. Further, a confirmatory factor analysis (CFA) was conducted. The ratio of chi-square and degrees of freedom (χ2 /df), comparative fit index (CFI), goodness of fit index (GFI) and root mean square error of approximation (RMSEA) were used for fit model assessment. In addition, the reliability of the instrument was estimated using the composite reliability (CR) and Cronbach’s alpha coefficient (α), and the invariance of the model in independent samples was estimated by a multigroup analysis (Δχ2). Results Participants included 1,140 cancer patients with a mean age of 53.95 (SD = 13.25) years; 61.3% were women. After the CFA of the original CASQ structure, 2 items with inadequate factor weights were removed. Four correlations between errors were included to provide adequate fit to the sample (χ2 /df = 8.532, CFI = .94, GFI = .95, and RMSEA = .08). Themodel exhibited a low convergent validity (AVE = .32). The reliability was adequate (CR = .82 α = .82). The refined model showed strong invariance in two independent samples (Δχ2 : λ: p = .855; i: p = .824; Res: p = .390). A weak stability was obtained between patients undergoing chemotherapy and radiotherapy (Δχ2 : λ: p = .155; i: p < .001; Res: p < .001), and between patients undergoing chemotherapy combined with radiotherapy and palliative care (Δχ2 : λ: p = .058; i: p < .001; Res: p < .001). Conclusion The Portuguese version of the CASQ had good face and construct validity and reliability. However, the CASQ still presented invariance in independent samples of Brazilian patients with cancer. However, the tool has low convergent validity and weak invariance in samples with different treatment

    Pancreatic cancerrelated cachexia: influence on metabolism and correlation to weight loss and pulmonary function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dramatic weight loss is an often underestimated symptom in pancreatic cancer patients. Cachexia- defined as an unintended loss of stable weight exceeding 10% – is present in up to 80% of patients with cancer of the upper gastrointestinal tract, and has a significant influence on survival. The aim of the study was to show the multiple systemic effects of cachexia in pancreatic cancer patients, in terms of resection rate, effects on pulmonary function, amount of fat and muscle tissue, as well as changes in laboratory parameters.</p> <p>Methods</p> <p>In patients with pancreatic cancer, clinical appearance was documented, including the amount of weight loss. Laboratory parameters and lung-function tests were evaluated, and the thickness of muscle and fat tissue was measured with computed tomography scans. Statistical analysis, including multivariate analysis, was performed using SPSS software. Survival curves were calculated using Kaplan-Meier analysis and the log-rank test. To test for significant differences between the examined groups we used Student's t-test and the Mann-Whitney U test. Significance was defined as p < 0.05.</p> <p>Results</p> <p>Of 198 patients with a ductal adenocarcinoma of the pancreas, 70% were suffering from weight loss when they presented for operation, and in 40% weight loss exceeded 10% of the stable weight. In patients with cachexia, metastases were diagnosed significantly more often (47% vs. 24%, P < 0.001), leading to a significantly reduced resection rate in these patients. Patients with cachexia had significantly reduced fat tissue amounts. Hence, dramatic weight loss in a patient with pancreatic cancer may be a hint of a more progressed or more aggressive tumour.</p> <p>Conclusion</p> <p>Pancreatic cancer patients with cachexia had a higher rate of more progressed tumour stages and a worse nutritional status. Furthermore, patients with cachexia had an impaired lung function and a reduction in fat tissue. Patients with pancreatic cancer and cachexia had significantly reduced survival. If weight loss exceeded 5% there was a significantly reduced resection rate to detect, but the changes were significantly more substantial if weight loss was 10% or more. We propose that a weight loss of 10% be defined as significant in pancreatic cancer.</p

    Expression of the ubiquitin-proteasome pathway and muscle loss in experimental cancer cachexia

    Get PDF
    Muscle protein degradation is thought to play a major role in muscle atrophy in cancer cachexia. To investigate the importance of the ubiquitin-proteasome pathway, which has been suggested to be the main degradative pathway mediating progressive protein loss in cachexia, the expression of mRNA for proteasome subunits C2 and C5 as well as the ubiquitin-conjugating enzyme, E214k, has been determined in gastrocnemius and pectoral muscles of mice bearing the MAC16 adenocarcinoma, using competitive quantitative reverse transcriptase polymerase chain reaction. Protein levels of proteasome subunits and E214k were determined by immunoblotting, to ensure changes in mRNA were reflected in changes in protein expression. Muscle weights correlated linearly with weight loss during the course of the study. There was a good correlation between expression of C2 and E214k mRNA and protein levels in gastrocnemius muscle with increases of 6–8-fold for C2 and two-fold for E214k between 12 and 20% weight loss, followed by a decrease in expression at weight losses of 25–27%, although loss of muscle protein continued. In contrast, expression of C5 mRNA only increased two-fold and was elevated similarly at all weight losses between 7.5 and 27%. Both proteasome functional activity, and proteasome-specific tyrosine release as a measure of total protein degradation was also maximal at 18–20% weight loss and decreased at higher weight loss. Proteasome expression in pectoral muscle followed a different pattern with increases in C2 and C5 and E214k mRNA only being seen at weight losses above 17%, although muscle loss increased progressively with increasing weight loss. These results suggest that activation of the ubiquitin-proteasome pathway plays a major role in protein loss in gastrocnemius muscle, up to 20% weight loss, but that other factors such as depression in protein synthesis may play a more important role at higher weight loss

    STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    Get PDF
    Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia.Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer.These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such that amino acids liberated by increased proteolysis in cachexia are synthesized into acute phase proteins and exported into the blood

    Angiotensin II Infusion Induces Marked Diaphragmatic Skeletal Muscle Atrophy

    Get PDF
    Advanced congestive heart failure (CHF) and chronic kidney disease (CKD) are characterized by increased angiotensin II (Ang II) levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week) and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control) suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase) and of the satellite cell marker M-cadherin (59.2±22.2% increase). Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase) in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase), those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD

    Accumulation of poly(A) RNA in nuclear granules enriched in Sam68 in motor neurons from the SMNA7 mouse model of SMA

    Get PDF
    Spinal muscular atrophy (SMA) is a severe motor neuron (MN) disease caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene, which results in reduced levels of the SMN protein and the selective degeneration of lower MNs. The best-known function of SMN is the biogenesis of spliceosomal snRNPs, the major components of the pre-mRNA splicing machinery. Therefore, SMN deficiency in SMA leads to widespread splicing abnormalities. We used the SMN?7 mouse model of SMA to investigate the cellular reorganization of polyadenylated mRNAs associated with the splicing dysfunction in MNs. We demonstrate that SMN deficiency induced the abnormal nuclear accumulation in euchromatin domains of poly(A) RNA granules (PARGs) enriched in the splicing regulator Sam68. However, these granules lacked other RNA-binding proteins, such as TDP43, PABPN1, hnRNPA12B, REF and Y14, which are essential for mRNA processing and nuclear export. These effects were accompanied by changes in the alternative splicing of the Sam68-dependent Bcl-x and Nrnx1 genes, as well as changes in the relative accumulation of the intron-containing Chat, Chodl, Myh9 and Myh14 mRNAs, which are all important for MN functions. PARG-containing MNs were observed at presymptomatic SMA stage, increasing their number during the symptomatic stage. Moreover, the massive accumulations of poly(A) RNA granules in MNs was accompanied by the cytoplasmic depletion of polyadenylated mRNAs for their translation. We suggest that the SMN-dependent abnormal accumulation of polyadenylated mRNAs and Sam68 in PARGs reflects a severe dysfunction of both mRNA processing and translation, which could contribute to SMA pathogenesis.This work was supported by grants from: “Dirección General de Investigación” of Spain (BFU2014-54754-P and SAF2015-70801-R, cofinanced by FEDER) and “Instituto de Investigación Marqués de Valdecilla-IDIVAL (NVAL17/22). Dr. Tapia is the recipient of a grant from SMA Europe and FundAME (Spain)

    Calpains Mediate Integrin Attachment Complex Maintenance of Adult Muscle in Caenorhabditis elegans

    Get PDF
    Two components of integrin containing attachment complexes, UNC-97/PINCH and UNC-112/MIG-2/Kindlin-2, were recently identified as negative regulators of muscle protein degradation and as having decreased mRNA levels in response to spaceflight. Integrin complexes transmit force between the inside and outside of muscle cells and signal changes in muscle size in response to force and, perhaps, disuse. We therefore investigated the effects of acute decreases in expression of the genes encoding these multi-protein complexes. We find that in fully developed adult Caenorhabditis elegans muscle, RNAi against genes encoding core, and peripheral, members of these complexes induces protein degradation, myofibrillar and mitochondrial dystrophies, and a movement defect. Genetic disruption of Z-line– or M-line–specific complex members is sufficient to induce these defects. We confirmed that defects occur in temperature-sensitive mutants for two of the genes: unc-52, which encodes the extra-cellular ligand Perlecan, and unc-112, which encodes the intracellular component Kindlin-2. These results demonstrate that integrin containing attachment complexes, as a whole, are required for proper maintenance of adult muscle. These defects, and collapse of arrayed attachment complexes into ball like structures, are blocked when DIM-1 levels are reduced. Degradation is also blocked by RNAi or drugs targeting calpains, implying that disruption of integrin containing complexes results in calpain activation. In wild-type animals, either during development or in adults, RNAi against calpain genes results in integrin muscle attachment disruptions and consequent sub-cellular defects. These results demonstrate that calpains are required for proper assembly and maintenance of integrin attachment complexes. Taken together our data provide in vivo evidence that a calpain-based molecular repair mechanism exists for dealing with attachment complex disruption in adult muscle. Since C. elegans lacks satellite cells, this mechanism is intrinsic to the muscles and raises the question if such a mechanism also exists in higher metazoans
    corecore