449 research outputs found

    Order-of-magnitude speedup for steady states and traveling waves via Stokes preconditioning in Channelflow and Openpipeflow

    Full text link
    Steady states and traveling waves play a fundamental role in understanding hydrodynamic problems. Even when unstable, these states provide the bifurcation-theoretic explanation for the origin of the observed states. In turbulent wall-bounded shear flows, these states have been hypothesized to be saddle points organizing the trajectories within a chaotic attractor. These states must be computed with Newton's method or one of its generalizations, since time-integration cannot converge to unstable equilibria. The bottleneck is the solution of linear systems involving the Jacobian of the Navier-Stokes or Boussinesq equations. Originally such computations were carried out by constructing and directly inverting the Jacobian, but this is unfeasible for the matrices arising from three-dimensional hydrodynamic configurations in large domains. A popular method is to seek states that are invariant under numerical time integration. Surprisingly, equilibria may also be found by seeking flows that are invariant under a single very large Backwards-Euler Forwards-Euler timestep. We show that this method, called Stokes preconditioning, is 10 to 50 times faster at computing steady states in plane Couette flow and traveling waves in pipe flow. Moreover, it can be carried out using Channelflow (by Gibson) and Openpipeflow (by Willis) without any changes to these popular spectral codes. We explain the convergence rate as a function of the integration period and Reynolds number by computing the full spectra of the operators corresponding to the Jacobians of both methods.Comment: in Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, ed. Alexander Gelfgat (Springer, 2018

    Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp maritima: from traditional remedies to prospective products

    Get PDF
    This work explored the biotechnological potential of the medicinal halophyte Artemisia campestris subsp. maritima (dune wormwood) as a source of health promoting commodities. For that purpose, infusions, decoctions and tinctures were prepared from roots and aerial-organs and evaluated for in vitro antioxidant, anti-diabetic and tyrosinase-inhibitory potential, and also for polyphenolic and mineral contents and toxicity. The dune wormwood extracts had high polyphenolic content and several phenolics were identified by ultra-high performance liquid chromatography-photodiode array-mass-spectrometry (UHPLC-PDA-MS). The main compounds were quinic, chlorogenic and caffeic acids, coumarin sulfates and dicaffeoylquinic acids; several of the identified phytoconstituents are here firstly reported in this A. campestris subspecies. Results obtained with this plant's extracts point to nutritional applications as mineral supplementary source, safe for human consumption, as suggested by the moderate to low toxicity of the extracts towards mammalian cell lines. The dune wormwood extracts had in general high antioxidant activity and also the capacity to inhibit a-glucosidase and tyrosinase. In summary, dune wormwood extracts are a significant source of polyphenolic and mineral constituents, antioxidants and a-glucosidase and tyrosinase inhibitors, and thus, relevant for different commercial segments like the pharmaceutical, cosmetic and/or food industries.FCT - Foundation for Science and Technology [CCMAR/Multi/04326/2013]; Portuguese National Budget; FCT [IF/00049/2012, SFRH/BD/94407/2013]; Research Foundation - Flanders (FWO) [12M8315N]info:eu-repo/semantics/publishedVersio

    Why can pulmonary vein stenoses created by radiofrequency catheter ablation worsen during and after follow-up ? A potential explanation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiofrequency catheter ablation of excitation foci inside pulmonary veins (PV) generates stenoses that can become quite severe during or after the follow-up period. Since severe PV stenoses have most often disastrous consequences, it would be important to know the underlying mechanism of this temporal evolution. The present study proposes a potential explanation based on mechanical considerations.</p> <p>Methods</p> <p>we have used a mathematical-physical model to examine the cyclic increase in axial wall stress induced in the proximal (= upstream), non-stenosed segment of a stenosed pulmonary vein during the forward flow phases. In a representative example, the value of this increase at peak flow was calculated for diameter stenoses (DS) ranging from 1 to 99%.</p> <p>Results</p> <p>The increase becomes appreciable at a DS of roughly 30% and rise then strongly with further increasing DS value. At high DS values (e.g. > 90%) the increase is approximately twice the value of the axial stress present in the PV during the zero-flow phase.</p> <p>Conclusion</p> <p>Since abnormal wall stresses are known to induce damages and abnormal biological processes (e.g., endothelium tears, elastic membrane fragmentations, matrix secretion, myofibroblast generation, etc) in the vessel wall, it seems plausible that the supplementary axial stress experienced cyclically by the stenotic and the proximal segments of the PV is responsible for the often observed progressive reduction of the vessel lumen after healing of the ablation injury. In the light of this model, the only potentially effective therapy in these cases would be to reduce the DS as strongly as possible. This implies most probably stenting or surgery.</p

    Computationally-Optimized Bone Mechanical Modeling from High-Resolution Structural Images

    Get PDF
    Image-based mechanical modeling of the complex micro-structure of human bone has shown promise as a non-invasive method for characterizing bone strength and fracture risk in vivo. In particular, elastic moduli obtained from image-derived micro-finite element (μFE) simulations have been shown to correlate well with results obtained by mechanical testing of cadaveric bone. However, most existing large-scale finite-element simulation programs require significant computing resources, which hamper their use in common laboratory and clinical environments. In this work, we theoretically derive and computationally evaluate the resources needed to perform such simulations (in terms of computer memory and computation time), which are dependent on the number of finite elements in the image-derived bone model. A detailed description of our approach is provided, which is specifically optimized for μFE modeling of the complex three-dimensional architecture of trabecular bone. Our implementation includes domain decomposition for parallel computing, a novel stopping criterion, and a system for speeding up convergence by pre-iterating on coarser grids. The performance of the system is demonstrated on a dual quad-core Xeon 3.16 GHz CPUs equipped with 40 GB of RAM. Models of distal tibia derived from 3D in-vivo MR images in a patient comprising 200,000 elements required less than 30 seconds to converge (and 40 MB RAM). To illustrate the system's potential for large-scale μFE simulations, axial stiffness was estimated from high-resolution micro-CT images of a voxel array of 90 million elements comprising the human proximal femur in seven hours CPU time. In conclusion, the system described should enable image-based finite-element bone simulations in practical computation times on high-end desktop computers with applications to laboratory studies and clinical imaging

    Visualization of elusive structures using intracardiac echocardiography: Insights from electrophysiology

    Get PDF
    Electrophysiological mapping and ablation techniques are increasingly used to diagnose and treat many types of supraventricular and ventricular tachycardias. These procedures require an intimate knowledge of intracardiac anatomy and their use has led to a renewed interest in visualization of specific structures. This has required collaborative efforts from imaging as well as electrophysiology experts. Classical imaging techniques may be unable to visualize structures involved in arrhythmia mechanisms and therapy. Novel methods, such as intracardiac echocardiography and three-dimensional echocardiography, have been refined and these technological improvements have opened new perspectives for more effective and accurate imaging during electrophysiology procedures. Concurrently, visualization of these structures noticeably improved our ability to identify intracardiac structures. The aim of this review is to provide electrophysiologists with an overview of recent insights into the structure of the heart obtained with intracardiac echocardiography and to indicate to the echo-specialist which structures are potentially important for the electrophysiologist

    A systematic review and meta-analysis of bone metabolism in prostate adenocarcinoma

    Get PDF
    <p/> <p>Background</p> <p>Osteoporosis could be associated with the hormone therapy for metastatic prostate carcinoma (PCa) and with PCa <it>per se</it>. The objective of this review is to determine the incidence of bone loss and osteoporosis in patients with PCa who are or are not treated with hormone therapy (ADT).</p> <p>Methods</p> <p>The Medline, Embase, Cancerlit, and American Society of Clinical Oncology Abstract databases were searched for published studies on prostate cancer and bone metabolism. The outcomes assessed were: fracture, osteoporosis and osteopenia.</p> <p>Results</p> <p>Thirty-two articles (116,911 participants) were included in the meta-analysis. PCa patients under ADT had a higher risk of osteoporosis (RR, 1.30; <it>p </it>< 0.00001) and a higher risk of fractures (RR, 1.17; <it>p </it>< 0.00001) as compared to patients not under ADT. The total bone mineral density was lower in patients under ADT when compared with patients not under ADT (<it>p </it>= 0.031) but it was similar to bone mineral density found in healthy controls (<it>p </it>= 0.895). The time of androgen deprivation therapy correlated negatively with lumbar spine and total hip bone mineral density (Spearman's rho = -0.490 and -0.773; <it>p </it>= 0.028 and 0.001, respectively) and with total hip <it>t </it>score (Spearman's rho = -0.900; <it>p </it>= 0.037).</p> <p>Conclusion</p> <p>We found consistent evidence that the use of androgen deprivation therapy in patients with PCa reduces bone mineral density, increasing the risk of fractures in these patients.</p

    Does economic development contribute to sex differences in ischaemic heart disease mortality? Hong Kong as a natural experiment using a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The male excess risk of premature ischemic heart disease (IHD) mortality may be partially due to an unknown macro-environmental influence associated with economic development. We examined whether excess male risk of IHD mortality was higher with birth in an economically developed environment.</p> <p>Methods</p> <p>We used multivariable logistic regression in a population-based case-control study of all adult deaths in Hong Kong Chinese in 1998 to compare sex differences in IHD mortality (1,189 deaths in men, 1,035 deaths in women and 20,842 controls) between Hong Kong residents born in economically developed Hong Kong or in contemporaneously undeveloped Guangdong province in China.</p> <p>Results</p> <p>Younger (35–64 years) native-born Hong Kong men had a higher risk of IHD death than such women (odds ratio 2.91, 95% confidence interval 1.66 to 5.13), adjusted for age, socio-economic status and lifestyle. There was no such sex difference in Hong Kong residents who had migrated from Guangdong. There were no sex differences in pneumonia deaths by birth place.</p> <p>Conclusion</p> <p>Most of these people migrated as young adults; we speculate that environmentally mediated differences in pubertal maturation (when the male disadvantage in lipids and fat patterning emerges) may contribute to excess male premature IHD mortality in developed environments.</p

    In-situ upgrading of Napier grass pyrolysis vapour over microporous and hierarchical mesoporous zeolites

    Get PDF
    This study presents in-situ upgrading of pyrolysis vapour derived from Napier grass over microporous and mesoporous ZSM-5 catalysts. It evaluates effect of process variables such catalyst–biomass ratio and catalyst type in a vertical fixed bed pyrolysis system at 600 °C, 50 °C/min under 5 L/min nitrogen flow. Increasing catalyst–biomass ratio during the catalytic process with microporous structure reduced production of organic phase bio-oil by approximately 7.0 wt%. Using mesoporous catalyst promoted nearly 4.0 wt% higher organic yield relative to microporous catalyst, which translate to only about 3.0 wt% reduction in organic phase compared to the yield of organic phase from non-catalytic process. GC–MS analysis of bio-oil organic phase revealed maximum degree of deoxygenation of about 36.9% with microporous catalyst compared to the mesoporous catalysts, which had between 39 and 43%. Mesoporous catalysts promoted production olefins and alkanes, normal phenol, monoaromatic hydrocarbons while microporous catalyst favoured the production of alkenes and polyaromatic hydrocarbons. There was no significant increase in the production of normal phenols over microporous catalyst due to its inability to transform the methoxyphenols and methoxy aromatics. This study demonstrated that upgrading of Napier grass pyrolysis vapour over mesoporous ZSM-5 produced bio-oil with improved physicochemical properties
    corecore