421 research outputs found
Water dynamics in Shewanella oneidensis at ambient and high pressure using quasi-elastic neutron scattering
Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth’s deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7–1.1 Å−1 corresponding to real space dimensions of 6–9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures
DNA databanks and consent: A suggested policy option involving an authorization model
BACKGROUND: Genetic databases are becoming increasingly common as a means of determining the relationship between lifestyle, environmental exposures and genetic diseases. These databases rely on large numbers of research subjects contributing their genetic material to successfully explore the genetic basis of disease. However, as all possible research questions that can be posed of the data are unknown, an unresolved ethical issue is the status of informed consent for future research uses of genetic material. DISCUSSION: In this paper, we discuss the difficulties of an informed consent model for future ineffable uses of genetic data. We argue that variations on consent, such as presumed consent, blanket consent or constructed consent fail to meet the standards required by current informed consent doctrine and are distortions of the original concept. In this paper, we propose the concept of an authorization model whereby participants in genetic data banks are able to exercise a certain amount of control over future uses of genetic data. We argue this preserves the autonomy of individuals at the same time as allowing them to give permission and discretion to researchers for certain types of research. SUMMARY: The authorization model represents a step forward in the debate about informed consent in genetic databases. The move towards an authorization model would require changes in the regulatory and legislative environments. Additionally, empirical support of the utility and acceptability of authorization is required
Detection of changes in gene regulatory patterns, elicited by perturbations of the Hsp90 molecular chaperone complex, by visualizing multiple experiments with an animation
<p>Abstract</p> <p>Background</p> <p>To make sense out of gene expression profiles, such analyses must be pushed beyond the mere listing of affected genes. For example, if a group of genes persistently display similar changes in expression levels under particular experimental conditions, and the proteins encoded by these genes interact and function in the same cellular compartments, this could be taken as very strong indicators for co-regulated protein complexes. One of the key requirements is having appropriate tools to detect such regulatory patterns.</p> <p>Results</p> <p>We have analyzed the global adaptations in gene expression patterns in the budding yeast when the Hsp90 molecular chaperone complex is perturbed either pharmacologically or genetically. We integrated these results with publicly accessible expression, protein-protein interaction and intracellular localization data. But most importantly, all experimental conditions were simultaneously and dynamically visualized with an animation. This critically facilitated the detection of patterns of gene expression changes that suggested underlying regulatory networks that a standard analysis by pairwise comparison and clustering could not have revealed.</p> <p>Conclusions</p> <p>The results of the animation-assisted detection of changes in gene regulatory patterns make predictions about the potential roles of Hsp90 and its co-chaperone p23 in regulating whole sets of genes. The simultaneous dynamic visualization of microarray experiments, represented in networks built by integrating one's own experimental with publicly accessible data, represents a powerful discovery tool that allows the generation of new interpretations and hypotheses.</p
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup
Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD
Psychophysiology in games
Psychophysiology is the study of the relationship between psychology
and its physiological manifestations. That relationship is of particular importance
for both game design and ultimately gameplaying. Players’ psychophysiology offers
a gateway towards a better understanding of playing behavior and experience.
That knowledge can, in turn, be beneficial for the player as it allows designers to
make better games for them; either explicitly by altering the game during play or
implicitly during the game design process. This chapter argues for the importance
of physiology for the investigation of player affect in games, reviews the current
state of the art in sensor technology and outlines the key phases for the application
of psychophysiology in games.The work is supported, in part, by the EU-funded FP7 ICT iLearnRWproject
(project no: 318803).peer-reviewe
Mitochondrial genetic haplogroups and incident obesity: a longitudinal cohort study
BACKGROUND/OBJECTIVES:
A small number of case-control studies have suggested that mitochondrial haplogroups could be associated with obesity. We examined whether obesity risk was influenced by mitochondrial haplogroup in a large North American cohort across an 8-year period. We conducted a longitudinal cohort study including individuals from the Osteoarthritis Initiative.
SUBJECTS/METHODS:
Mitochondrial haplogroups were determined by sequencing and PCR-RFLP techniques using this nomenclature: HV, JT, KU, IWX, and super HV/others. The strength of the association between mitochondrial haplogroups and incident obesity was quantified with hazard ratios (HRs), adjusted for potential confounders using a Cox's regression analysis.
RESULTS:
Overall, 2342 non-obese Caucasian participants (56.7% women) with a mean ± SD age of 62.0 ± 9.5 years at baseline were included. During a median follow-up of 8 years, 334 individuals ( = 14.3% of baseline population) became obese. After adjusting for nine potential confounders, the haplogroups IWX carried a significant 48% higher risk of obesity (HR = 1.48; 95% CI: 1.02-2.39) compared to the HV haplotype (the most frequent type).
CONCLUSION:
Only the presence of the IWX haplogroups appears to be linked to increased obesity risk, independent of potential baseline confounders. Future cohort studies are needed to confirm these findings and to determine potential underlying mechanisms
The Molecular Chaperone Hsp90α Is Required for Meiotic Progression of Spermatocytes beyond Pachytene in the Mouse
The molecular chaperone Hsp90 has been found to be essential for viability in all tested eukaryotes, from the budding yeast to Drosophila. In mammals, two genes encode the two highly similar and functionally largely redundant isoforms Hsp90α and Hsp90β. Although they are co-expressed in most if not all cells, their relative levels vary between tissues and during development. Since mouse embryos lacking Hsp90β die at implantation, and despite the fact that Hsp90 inhibitors being tested as anti-cancer agents are relatively well tolerated, the organismic functions of Hsp90 in mammals remain largely unknown. We have generated mouse lines carrying gene trap insertions in the Hsp90α gene to investigate the global functions of this isoform. Surprisingly, mice without Hsp90α are apparently normal, with one major exception. Mutant male mice, whose Hsp90β levels are unchanged, are sterile because of a complete failure to produce sperm. While the development of the male reproductive system appears to be normal, spermatogenesis arrests specifically at the pachytene stage of meiosis I. Over time, the number of spermatocytes and the levels of the meiotic regulators and Hsp90 interactors Hsp70-2, NASP and Cdc2 are reduced. We speculate that Hsp90α may be required to maintain and to activate these regulators and/or to disassemble the synaptonemal complex that holds homologous chromosomes together. The link between fertility and Hsp90 is further supported by our finding that an Hsp90 inhibitor that can cross the blood-testis barrier can partially phenocopy the genetic defects
Functional Connectivity in Tactile Object Discrimination—A Principal Component Analysis of an Event Related fMRI-Study
BACKGROUND: Tactile object discrimination is an essential human skill that relies on functional connectivity between the neural substrates of motor, somatosensory and supramodal areas. From a theoretical point of view, such distributed networks elude categorical analysis because subtraction methods are univariate. Thus, the aim of this study was to identify the neural networks involved in somatosensory object discrimination using a voxel-based principal component analysis (PCA) of event-related functional magnetic resonance images. METHODOLOGY/PRINCIPAL FINDINGS: Seven healthy, right-handed subjects aged between 22 and 44 years were required to discriminate with their dominant hand the length differences between otherwise identical parallelepipeds in a two-alternative forced-choice paradigm. Of the 34 principal components retained for analysis according to the 'bootstrapped' Kaiser-Guttman criterion, t-tests applied to the subject-condition expression coefficients showed significant mean differences between the object presentation and inter-stimulus phases in PC 1, 3, 26 and 32. Specifically, PC 1 reflected object exploration or manipulation, PC 3 somatosensory and short-term memory processes. PC 26 evinced the perception that certain parallelepipeds could not be distinguished, while PC 32 emerged in those choices when they could be. Among the cerebral regions evident in the PCs are the left posterior parietal lobe and premotor cortex in PC 1, the left superior parietal lobule (SPL) and the right cuneus in PC 3, the medial frontal and orbitofrontal cortex bilaterally in PC 26, and the right intraparietal sulcus, anterior SPL and dorsolateral prefrontal cortex in PC 32. CONCLUSIONS/SIGNIFICANCE: The analysis provides evidence for the concerted action of large-scale cortico-subcortical networks mediating tactile object discrimination. Parallel to activity in nodes processing object-related impulses we found activity in key cerebral regions responsible for subjective assessment and validation
- …