1,877 research outputs found
Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production
© 2014 Pandit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SPD against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection. © 2014 Pandit et al.The work (Project no. 2011-16850) was supported by Medical Innovation Fund of Indian Council of Medical Research, New Delhi, India (www.icmr.nic.in/)
Why Self-Induced Pain Feels Less Painful than Externally Generated Pain: Distinct Brain Activation Patterns in Self- and Externally Generated Pain
Voluntary movement generally inhibits sensory systems. However, it is not clear how such movement influences pain. In the present study, subjects actively or passively experienced mechanical pain or pressure during functional MRI scanning. Pain and pressure were induced using two modified grip strengthener rings, each twined with four crystal bead strings, with polyhedral beads to induce pain, or spherical beads to induce pressure. Subjects held one ring in the left hand and were either asked to squeeze their left hand with their right hand (i.e., active pain or pressure), or to have their left hand squeezed by the experimenter (i.e., passive pain or pressure). Subjects rated the intensity and unpleasantness of the pain sensation lower in the active procedure than in the passive one. Correspondingly, pain-related brain areas were inhibited in the case of self-generated pain, including the primary somatosensory cortex (SI), anterior cingulate cortex (ACC), and the thalamus. These results suggest that active movement behaviorally inhibits concomitant mechanical pain, accompanied by an inhibition of pain response in pain-related brain areas such as the SI cortex. This might be part of the mechanisms underlying the kinesitherapy for pain treatment
Effects of Dietary Restriction on Cancer Development and Progression
The effects of caloric restriction on tumor growth and progression are known for
over a century. Indeed, fasting has been practiced for millennia, but just recently
has emerged the protective role that it may exert toward cells. Fasting cycles are
able to reprogram the cellular metabolism, by inducing protection against oxidative
stress and prolonging cellular longevity. The reduction of calorie intake as
well as short- or long-term fasting has been shown to protect against chronic and
degenerative diseases, such as diabetes, cardiovascular pathologies, and cancer.
In vitro and in vivo preclinical models showed that different restriction dietary
regimens may be effective against cancer onset and progression, by enhancing
therapy response and reducing its toxic side effects. Fasting-mediated beneficial
effects seem to be due to the reduction of inflammatory response and downregulation
of nutrient-related signaling pathways able to modulate cell proliferation
and apoptosis. In this chapter, we will discuss the most significant studies
present in literature regarding the molecular mechanisms by which dietary
restriction may contribute to prevent cancer onset, reduce its progression, and
positively affect the response to the treatments
Search for gamma-ray emission from magnetars with the Fermi Large Area Telescope
We report on the search for 0.1-10 GeV emission from magnetars in 17 months
of Fermi Large Area Telescope (LAT) observations. No significant evidence for
gamma-ray emission from any of the currently-known magnetars is found. The most
stringent upper limits to date on their persistent emission in the Fermi-LAT
energy range are estimated between ~10^{-12}-10^{-10} erg/s/cm2, depending on
the source. We also searched for gamma-ray pulsations and possible outbursts,
also with no significant detection. The upper limits derived support the
presence of a cut-off at an energy below a few MeV in the persistent emission
of magnetars. They also show the likely need for a revision of current models
of outer gap emission from strongly magnetized pulsars, which, in some
realizations, predict detectable GeV emission from magnetars at flux levels
exceeding the upper limits identified here using the Fermi-LAT observations.Comment: ApJ Letters in press; Corresponding authors: Caliandro G. A., Hadasch
D., Rea N., Burnett
Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi
We report the detection of high-energy gamma-ray emission from two starburst
galaxies using data obtained with the Large Area Telescope on board the Fermi
Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been
detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from
sources positionally coincident with locations of the starburst galaxies M82
and NGC 253. The total fluxes of the sources are consistent with gamma-ray
emission originating from the interaction of cosmic rays with local
interstellar gas and radiation fields and constitute evidence for a link
between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter
Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells
Cellular functions accompanying establishment of premature senescence in methotrexate-treated human colon cancer C85 cells are deciphered in the present study from validated competitive expression microarray data, analyzed with the use of Ingenuity Pathways Analysis (IPA) software. The nitrosative/oxidative stress, inferred from upregulated expression of inducible nitric oxide synthase (iNOS) and mitochondrial dysfunction-associated genes, including monoamine oxidases MAOA and MAOB, ÎČ-amyloid precursor protein (APP) and presenilin 1 (PSEN1), is identified as the main determinant of signaling pathways operating during senescence establishment. Activation of p53-signaling pathway is found associated with both apoptotic and autophagic components contributing to this process. Activation of nuclear factor ÎșB (NF-ÎșB), resulting from interferon Îł (IFNÎł), integrin, interleukin 1ÎČ (IL-1ÎČ), IL-4, IL-13, IL-22, Toll-like receptors (TLRs) 1, 2 and 3, growth factors and tumor necrosis factor (TNF) superfamily members signaling, is found to underpin inflammatory properties of senescent C85 cells. Upregulation of p21-activated kinases (PAK2 and PAK6), several Rho molecules and myosin regulatory light chains MYL12A and MYL12B, indicates acquisition of motility by those cells. Mitogen-activated protein kinase p38 MAPK ÎČ, extracellular signal-regulated kinases ERK2 and ERK5, protein kinase B AKT1, as well as calcium, are identified as factors coordinating signaling pathways in senescent C85 cells
Fermi Gamma-ray Imaging of a Radio Galaxy
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating
from the giant radio lobes of the radio galaxy Centaurus A. The resolved
gamma-ray image shows the lobes clearly separated from the central active
source. In contrast to all other active galaxies detected so far in high-energy
gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the
total source emission. The gamma-ray emission from the lobes is interpreted as
inverse Compton scattered relic radiation from the cosmic microwave background
(CMB), with additional contribution at higher energies from the
infrared-to-optical extragalactic background light (EBL). These measurements
provide gamma-ray constraints on the magnetic field and particle energy content
in radio galaxy lobes, and a promising method to probe the cosmic relic photon
fields.Comment: 27 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar
Fermi Large Area Telescope observations of PSR J1836+5925
The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly
unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments
of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic
plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8
million years, a spindown luminosity of 1.1 erg s, and a
large off-peak emission component, making it quite unusual among the known
gamma-ray pulsar population. We present an analysis of one year of LAT data,
including an updated timing solution, detailed spectral results and a long-term
light curve showing no indication of variability. No evidence for a surrounding
pulsar wind nebula is seen and the spectral characteristics of the off-peak
emission indicate it is likely magnetospheric. Analysis of recent XMM
observations of the X-ray counterpart yields a detailed characterization of its
spectrum, which, like Geminga, is consistent with that of a neutron star
showing evidence for both magnetospheric and thermal emission.Comment: Accepted to Astrophysical Journa
A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279
It is widely accepted that strong and variable radiation detected over all
accessible energy bands in a number of active galaxies arises from a
relativistic, Doppler-boosted jet pointing close to our line of sight. The size
of the emitting zone and the location of this region relative to the central
supermassive black hole are, however, poorly known, with estimates ranging from
light-hours to a light-year or more. Here we report the coincidence of a
gamma-ray flare with a dramatic change of optical polarization angle. This
provides evidence for co-spatiality of optical and gamma-ray emission regions
and indicates a highly ordered jet magnetic field. The results also require a
non-axisymmetric structure of the emission zone, implying a curved trajectory
for the emitting material within the jet, with the dissipation region located
at a considerable distance from the black hole, at about 10^5 gravitational
radii.Comment: Published in Nature issued on 18 February 2010. Corresponding
authors: Masaaki Hayashida and Greg Madejsk
- âŠ