67 research outputs found

    Gadd45α activity is the principal effector of Shigella mitochondria-dependent epithelial cell death in vitro and ex vivo

    Get PDF
    Modulation of death is a pathogen strategy to establish residence and promote survival in host cells and tissues. Shigella spp. are human pathogens that invade colonic mucosa, where they provoke lesions caused by their ability to manipulate the host cell responses. Shigella spp. induce various types of cell death in different cell populations. However, they are equally able to protect host cells from death. Here, we have investigated on the molecular mechanisms and cell effectors governing the balance between survival and death in epithelial cells infected with Shigella. To explore these aspects, we have exploited both, the HeLa cell invasion assay and a novel ex vivo human colon organ culture model of infection that mimics natural conditions of shigellosis. Our results definitely show that Shigella induces a rapid intrinsic apoptosis of infected cells, via mitochondrial depolarization and the ensuing caspase-9 activation. Moreover, for the first time we identify the eukaryotic stress-response factor growth arrest and DNA damage 45α as a key player in the induction of the apoptotic process elicited by Shigella in epithelial cells, revealing an unexplored role of this molecule in the course of infections sustained by invasive pathogens

    Fcγ Receptor I Alpha Chain (CD64) Expression in Macrophages Is Critical for the Onset of Meningitis by Escherichia coli K1

    Get PDF
    Neonatal meningitis due to Escherichia coli K1 is a serious illness with unchanged morbidity and mortality rates for the last few decades. The lack of a comprehensive understanding of the mechanisms involved in the development of meningitis contributes to this poor outcome. Here, we demonstrate that depletion of macrophages in newborn mice renders the animals resistant to E. coli K1 induced meningitis. The entry of E. coli K1 into macrophages requires the interaction of outer membrane protein A (OmpA) of E. coli K1 with the alpha chain of Fcγ receptor I (FcγRIa, CD64) for which IgG opsonization is not necessary. Overexpression of full-length but not C-terminal truncated FcγRIa in COS-1 cells permits E. coli K1 to enter the cells. Moreover, OmpA binding to FcγRIa prevents the recruitment of the γ-chain and induces a different pattern of tyrosine phosphorylation of macrophage proteins compared to IgG2a induced phosphorylation. Of note, FcγRIa−/− mice are resistant to E. coli infection due to accelerated clearance of bacteria from circulation, which in turn was the result of increased expression of CR3 on macrophages. Reintroduction of human FcγRIa in mouse FcγRIa−/− macrophages in vitro increased bacterial survival by suppressing the expression of CR3. Adoptive transfer of wild type macrophages into FcγRIa−/− mice restored susceptibility to E. coli infection. Together, these results show that the interaction of FcγRI alpha chain with OmpA plays a key role in the development of neonatal meningitis by E. coli K1

    Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge

    Get PDF
    Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ(-/-)) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ(-/-) mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ(-/-) mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7(+) γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion

    Connexin-dependent inter-cellular communication increases invasion and dissemination of Shigella in epithelial cells

    No full text
    Shigella flexneri, the causative agent of bacillar dystentery, invades the colonic mucosa where it elicits an intense inflammatory reaction responsible for destruction of the epithelium1,2. During cell invasion, contact with host cells activates the type-III secretion of the Shigella IpaB and IpaC proteins3,4. IpaB and IpaC are inserted into host cell plasma membranes and trigger initial signals that result in actin polymerization, while allowing cytosolic access of other bacterial effectors that further reorganize the cytoskeleton5,6. After internalization, Shigella moves intracellularly and forms protrusions that infect neighbouring cells, promoting bacterial dissemination across the epithelium2,6. Here, we show that during cell invasion, Shigella induces transient peaks in intracellular calcium concentration that are dependent on a functional type-III secretory apparatus. In addition, Shigella invasion induces the opening of Connexin 26 (Cx26) hemichannels in an actin- and phospholipase-C-dependent manner, allowing release of ATP into the medium. The released ATP, in turn, increases bacterial invasion and spreading, as well as calcium signalling induced by Shigella. These results provide evidence that pathogen-induced opening of connexin channels promotes signalling events that favour bacterial invasion and dissemination.link_to_subscribed_fulltex

    Pathogenicity islands of Shigella

    No full text
    International audienceShigella species are the causative agents of bacillary dysentery. Signs of disease range from mild diarrhea to a severe form of disease including fever, abdominal cramps, and stools containing blood, pus and mucus. Shigella are primarily human pathogens but can produce disease symptoms in other primates (Sansonetti 1992). After ingestion, shigellae traverse the intestinal epithelial barrier through specialized cells, called M-cells, at the level of the colon (Wassef et al. 1989). These cells transport antigens, including enteric pathogens, across the epithelium. Following transcytosis, micro-organisms gain access to lymphoid follicles containing resident tissue macrophages (Jarry et al. 1989; Soestayo et al. 1990). After phagocytosis, shigellae rapidly destroy the membrane of the phagosome and are liberated into the host cell cytoplasm (Finlay and Falkow 1988; Maurelli and Sansonetti 1988)
    • …
    corecore