7 research outputs found

    Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities

    Get PDF
    We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25°C to 37°C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins

    Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress

    Get PDF
    The expression of ribosomal protein (RP) genes requires a substantial part of cellular transcription, processing and translation resources. Thus, the RP expression must be tightly regulated in response to conditions that compromise cell survival. In Saccharomyces cerevisiae cells, regulation of the RP gene expression at the transcriptional, mature mRNA stability and translational levels during the response to osmotic stress has been reported. Reprogramming global protein synthesis upon osmotic shock includes the movement of ribosomes from RP transcripts to stress-induced mRNAs. Using tiling arrays, we show that osmotic stress yields a drop in the levels of RP pre-mRNAs in S. cerevisiae cells. An analysis of the tiling array data, together with transcription rates data, shows a poor correlation, indicating that the drop in the RP pre-mRNA levels is not merely a result of the lowered RP transcription rates. A kinetic study using quantitative RT-PCR confirmed the decrease in the levels of several RP-unspliced transcripts during the first 15 minutes of osmotic stress, which seems independent of MAP kinase Hog1. Moreover, we found that the mutations in the components of the nonsense-mediated mRNA decay (NMD), Upf1, Upf2, Upf3 or in exonuclease Xrn1, eliminate the osmotic stress-induced drop in RP pre-mRNAs. Altogether, our results indicate that the degradation of yeast RP unspliced transcripts by NMD increases during osmotic stress, and suggest that this might be another mechanism to control RP synthesis during the stress response

    Appl Microbiol Biotechnol

    No full text
    Non-Saccharomyces (NS) species that are either naturally present in grape must or added in mixed fermentation with S. cerevisiae may impact the wine's chemical composition and sensory properties. NS yeasts are prevailing during prefermentation and early stages of alcoholic fermentation. However, obtaining the correct balance between S. cerevisiae and NS species is still a critical issue: if S. cerevisiae outcompetes the non-Saccharomyces, it may minimize their impact, while conversely if NS take over S. cerevisiae, it may result in stuck or sluggish fermentations. Here, we propose an original strategy to promote the non-Saccharomyces consortium during the prefermentation stage while securing fermentation completion: the use of a long lag phase S. cerevisiae. Various fermentations in a Sauvignon Blanc with near isogenic S. cerevisiae displaying short or long lag phase were compared. Fermentations were performed with or without a consortium of five non-Saccharomyces yeasts (Hanseniaspora uvarum, Candida zemplinina, Metschnikowia spp., Torulaspora delbrueckii, and Pichia kluyveri), mimicking the composition of natural NS community in grape must. The sensorial analysis highlighted the positive impact of the long lag phase on the wine fruitiness and complexity. Surprisingly, the presence of NS modified only marginally the wine composition but significantly impacted the lag phase of S. cerevisiae. The underlying mechanisms are still unclear, but it is the first time that a study suggests that the wine composition can be affected by the lag phase duration per se. Further experiments should address the suitability of the use of long lag phase S. cerevisiae in winemaking

    Transcription-replication encounters, consequences and genomic instability

    No full text
    To ensure accurate duplication of genetic material, the replication fork must overcome numerous natural obstacles on its way, including transcription complexes engaged along the same template. Here we review the various levels of interdependence between transcription and replication processes and how different types of encounters between RNA-and DNA-polymerase complexes may result in clashes of those machineries on the DNA template and thus increase genomic instability. In addition, we summarize strategies evolved in bacteria and eukaryotes to minimize the consequences of collisions, including R-loop formation and topological stresses. © 2013 Nature America, Inc. All rights reserved

    ESICM LIVES 2016: part two : Milan, Italy. 1-5 October 2016.

    Get PDF
    Meeting abstrac

    Polyethylenes and Their Blends

    No full text
    corecore