2,694 research outputs found

    Biodiversity mediates productivity through different mechanisms at adjacent trophic levels

    Get PDF
    Biodiversity may enhance productivity either because diverse communities more often contain productive species (selection effects) or because they show greater complementarity in resource use. Our understanding of how these effects influence community production comes almost entirely from studies of plants. To test whether previous results apply to higher trophic levels, we first used simulations to derive expected contributions of selection and complementarity to production in competitive assemblages defined by either neutral interactions, dominance, or a trade-off between growth and competitive ability. The three types of simulated assemblages exhibited distinct interaction signatures when diversity effects were partitioned into selection and complementarity components. We then compared these signatures to those of experimental marine communities. Diversity influenced production in fundamentally different ways in assemblages of macroalgae, characterized by growth competition trade-offs, vs. in herbivores, characterized by dominance. Forecasting the effects of changing biodiversity in multitrophic ecosystems will require recognizing that the mechanism by which diversity in. fluences functioning can vary among trophic levels in the same food web

    Relative and interactive effects of plant and grazer richness in a benthic marine community

    Get PDF
    The interactive effects of changing biodiversity of consumers and their prey are poorly understood but are likely to be important under realistic scenarios of biodiversity loss and gain. We performed two factorial manipulations of macroalgal group (greens, reds, and browns) and herbivore species (amphipods, sea urchin, and fish) composition and richness in outdoor mesocosms simulating a subtidal, hard-substratum estuarine community in North Carolina, USA. In the experiment where grazer richness treatments were substitutive, there were no significant effects of algal or herbivore richness on final algal biomass. However, in the experiment in which grazer treatments were additive (i.e., species-specific densities were held constant across richness treatments), we found strong independent and interactive effects of algal and herbivore richness. Herbivore polycultures reduced algal biomass to a greater degree than the sum of the three herbivore monocultures, indicating that the measured grazer richness effects were not due solely to increased herbivore density in the polycultures. Taking grazer density into account also revealed that increasing algal richness dampened grazer richness effects. Additionally, the effect of algal richness on algal biomass accumulation was far stronger when herbivores were absent, suggesting that grazers can utilize the increased productivity and mask the positive effects of plant biodiversity on primary production. Our results highlight the complex independent and interactive effects of biodiversity between adjacent trophic levels and emphasize the importance of performing biodiversity-ecosystem functioning experiments in a realistic multi-trophic context

    Electrochemical polymerisation of phenol in aqueous solution on a Ta/PbO2 anode

    Get PDF
    This paper deals with the treatment of aqueous phenol solutions using an electrochemical technique. Phenol can be partly eliminated from aqueous solution by electrochemically initiated polymerisation. Galvanostatic electrolyses of phenol solutions at concentration up to 0.1 mol dm−3 were carried out on a Ta/PbO2 anode. The polymers formed are insoluble in acidic medium but soluble in alkaline. These polymers were filtered and then dissolved in aqueous solution of sodium hydroxide (1 mol dm−3). The polymers formed were quantified by total organic carbon (TOC) measurement. It was found that the conversion of phenol into polymers increases as a function of initial concentration, anodic current density, temperature, and solution pH. The percentage of phenol polymerised can reach 15%

    Effects of Trophic Skewing of Species Richness on Ecosystem Functioning in a Diverse Marine Community

    Get PDF
    Widespread overharvesting of top consumers of the world’s ecosystems has “skewed” food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions

    Nutrient Enrichment and Food Web Composition Affect Ecosystem Metabolism in an Experimental Seagrass Habitat

    Get PDF
    Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these interactions are poorly understood.Using an experimental seagrass mesocosm system, we factorially manipulated water column nutrient concentrations, food chain length, and diversity of crustacean grazers to address two questions: (1) Does food web composition modulate the effects of nutrient enrichment on plant and grazer biomasses and stoichiometry? (2) Do ecosystem fluxes of dissolved oxygen and nutrients more closely reflect above-ground biomass and community structure or sediment processes? Nutrient enrichment and grazer presence generally had strong effects on biomass accumulation, stoichiometry, and ecosystem fluxes, whereas predator effects were weaker or absent. Nutrient enrichment had little effect on producer biomass or net ecosystem production but strongly increased seagrass nutrient content, ecosystem flux rates, and grazer secondary production, suggesting that enhanced production was efficiently transferred from producers to herbivores. Gross ecosystem production (oxygen evolution) correlated positively with above-ground plant biomass, whereas inorganic nutrient fluxes were unrelated to plant or grazer biomasses, suggesting dominance by sediment microbial processes. Finally, grazer richness significantly stabilized ecosystem processes, as predators decreased ecosystem production and respiration only in the zero- and one- species grazer treatments.Overall, our results indicate that consumer presence and species composition strongly influence ecosystem responses to nutrient enrichment, and that increasing herbivore diversity can stabilize ecosystem flux rates in the face of perturbations

    Selective Inhibition of Type III Secretion Activated Signaling by the Salmonella Effector AvrA

    Get PDF
    Salmonella enterica utilizes a type III secretion system (TTSS) encoded in its pathogenicity island 1 to mediate its initial interactions with intestinal epithelial cells, which are characterized by the stimulation of actin cytoskeleton reorganization and a profound reprogramming of gene expression. These responses result from the stimulation of Rho-family GTPases and downstream signaling pathways by specific effector proteins delivered by this TTSS. We show here that AvrA, an effector protein of this TTSS, specifically inhibits the Salmonella-induced activation of the JNK pathway through its interaction with MKK7, although it does not interfere with the bacterial infection-induced NF-κB activation. We also show that AvrA is phosphorylated at evolutionary conserved residues by a TTSS-effector-activated ERK pathway. This interplay between effector proteins delivered by the same TTSS highlights the remarkable complexity of these systems

    Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study

    Get PDF
    Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists

    Concurrent use of prescription drugs and herbal medicinal products in older adults: A systematic review

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The use of herbal medicinal products (HMPs) is common among older adults. However, little is known about concurrent use with prescription drugs as well as the potential interactions associated with such combinations. Objective Identify and evaluate the literature on concurrent prescription and HMPs use among older adults to assess prevalence, patterns, potential interactions and factors associated with this use. Methods Systematic searches in MEDLINE, PsycINFO, EMBASE, CINAHL, AMED, Web of Science and Cochrane from inception to May 2017 for studies reporting concurrent use of prescription medicines with HMPs in adults (≥65 years). Quality was assessed using the Joanna Briggs Institute checklists. The Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) three stage approach to mixed method research was used to synthesise data. Results Twenty-two studies were included. A definition of HMPs or what was considered HMP was frequently missing. Prevalence of concurrent use by older adults varied widely between 5.3% and 88.3%. Prescription medicines most combined with HMPs were antihypertensive drugs, beta blockers, diuretics, antihyperlipidemic agents, anticoagulants, analgesics, antihistamines, antidiabetics, antidepressants and statins. The HMPs most frequently used were: ginkgo, garlic, ginseng, St John’s wort, Echinacea, saw palmetto, evening primrose oil and ginger. Potential risks of bleeding due to use of ginkgo, garlic or ginseng with aspirin or warfarin was the most reported herb-drug interaction. Some data suggests being female, a lower household income and less than high school education were associated with concurrent use. Conclusion Prevalence of concurrent prescription drugs and HMPs use among older adults is substantial and potential interactions have been reported. Knowledge of the extent and manner in which older adults combine prescription drugs will aid healthcare professionals can appropriately identify and manage patients at risk.Peer reviewedFinal Published versio

    Adenosine A2A receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice

    Get PDF
    © 2009 Nature Publishing Group All rights reservedPrevious in vitro studies have characterized the electrophysiological and molecular signaling pathways of adenosine tonic modulation on long-lasting synaptic plasticity events, particularly for hippocampal long-term potentiation(LTP). However, it remains to be elucidated whether the long-term changes produced by endogenous adenosine in the efficiency of synapses are related to those required for learning and memory formation. Our goal was to understand how endogenous activation of adenosine excitatory A2A receptors modulates the associative learning evolution in conscious behaving mice. We have studied here the effects of the application of a highly selective A2A receptor antagonist, SCH58261, upon a well-known associative learning paradigm - classical eyeblink conditioning. We used a trace paradigm, with a tone as the conditioned stimulus (CS) and an electric shock presented to the supraorbital nerve as the unconditioned stimulus(US). A single electrical pulse was presented to the Schaffer collateral–commissural pathway to evoke field EPSPs (fEPSPs) in the pyramidal CA1 area during the CS–US interval. In vehicle-injected animals, there was a progressive increase in the percentage of conditioning responses (CRs) and in the slope of fEPSPs through conditioning sessions, an effect that was completely prevented (and lost) in SCH58261 (0.5 mg/kg, i.p.)-injected animals. Moreover, experimentally evoked LTP was impaired in SCH58261- injected mice. In conclusion, the endogenous activation of adenosine A2A receptors plays a pivotal effect on the associative learning process and its relevant hippocampal circuits, including activity-dependent changes at the CA3-CA1 synapse.This study was supported by grants from the Spanish Ministry of Education and Research (BFU2005-01024 and BFU2005-02512), Spanish Junta de Andalucía (BIO-122 and CVI-02487), and the Fundación Conocimiento y Cultura of the Pablo de Olavide University (Seville, Spain).B. Fontinha was in receipt of a studentship from a project grant (POCI/SAU-NEU/56332/2004) supported by Fundação para a Ciência e Tecnologia (FCT, Portugal), and of an STSM from Cost B30 concerted action of the EU
    corecore