42 research outputs found

    Making the competitive exclusion principle operational at the biogeographical scale using fuzzy logic

    Get PDF
    In biogeography the competitive exclusion principle (CEP) has been confirmed in some cases but not in others. This has fueled an unresolved debate between those advocating niche theory or the neutral theory in biodiversity and biogeography. We suggest that this situation mainly arises from the use of crisp logic, where the CEP is defined as either completely true or false. We propose the application of the fuzzy concepts of favorability (the degree to which environmental conditions are propitious for the occurrence of individual species) and favorableness (the degree to which environmental conditions are simultaneously favorable for competing species) to operationalize a fuzzy version of the CEP. Favorability was obtained by performing species distribution models applying favorability functions, while favorableness was derived from the application of the fuzzy intersection between the favorability for competing species. Then we plotted individual favorability values along the gradient of favorableness. Two potentially competing species would coexist in high-favorableness locations, as the demands of both species would be well fulfilled. In locations of low favorableness, the result would be either autecological exclusion of both species or autecological segregation, as abiotic conditions are unfavorable for at least one of the species. Competitive exclusion would occur at the intermediate stretch of the favorableness gradient, as the conditions would be good enough for persistence of each species separately but not enough for permanent coexistence. According to this theoretical framework, the observed probability that a location belongs to the intermediate favorableness area given that the two species co-occur in this location should be lower than expected according to the environmental probability models for the two species. We tested this prediction on published data about the distribution of pairs of native and introduced deer species in Great Britain, using a Bayesian approach. In two thirds of comparisons between a native and an introduced deer species the predictions of the fuzzy CEP were corroborated, which suggests that these are the pairs of species and the specific geographical areas affected by competitive exclusion. This is important both theoretically and for biodiversity conservation planning

    Shrub Invasion Decreases Diversity and Alters Community Stability in Northern Chihuahuan Desert Plant Communities

    Get PDF
    BACKGROUND:Global climate change is rapidly altering species range distributions and interactions within communities. As ranges expand, invading species change interactions in communities which may reduce stability, a mechanism known to affect biodiversity. In aridland ecosystems worldwide, the range of native shrubs is expanding as they invade and replace native grassland vegetation with significant consequences for biodiversity and ecosystem functioning. METHODOLOGY:We used two long-term data sets to determine the effects of shrub encroachment by Larrea tridentata on subdominant community composition and stability in formerly native perennial grassland dominated by Bouteloua eriopoda in New Mexico, USA. PRINCIPAL FINDINGS:Our results indicated that Larrea invasion decreased species richness during the last 100 years. We also found that over shorter temporal scales species-poor subdominant communities in areas invaded by Larrea were less stable (more variable in time) compared to species rich communities in grass-dominated vegetation. Compositional stability increased as cover of Bouteloua increased and decreased as cover of Larrea increased. SIGNIFICANCE:Changes in community stability due to altered interspecific interactions may be one mechanism by which biodiversity declines in grasslands following shrub invasion. As global warming increases, shrub encroachment into native grasslands worldwide will continue to alter species interactions and community stability both of which may lead to a decline in biodiversity

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Spatial access priority mapping (SAPM) with fishers : a quantitative GIS method for participatory planning

    Get PDF
    Spatial management tools, such as marine spatial planning and marine protected areas, are playing an increasingly important role in attempts to improve marine management and accommodate conflicting needs. Robust data are needed to inform decisions among different planning options, and early inclusion of stakeholder involvement is widely regarded as vital for success. One of the biggest stakeholder groups, and the most likely to be adversely impacted by spatial restrictions, is the fishing community. In order to take their priorities into account, planners need to understand spatial variation in their perceived value of the sea. Here a readily accessible, novel method for quantitatively mapping fishers’ spatial access priorities is presented. Spatial access priority mapping, or SAPM, uses only basic functions of standard spreadsheet and GIS software. Unlike the use of remote-sensing data, SAPM actively engages fishers in participatory mapping, documenting rather than inferring their priorities. By so doing, SAPM also facilitates the gathering of other useful data, such as local ecological knowledge. The method was tested and validated in Northern Ireland, where over 100 fishers participated in a semi-structured questionnaire and mapping exercise. The response rate was excellent, 97%, demonstrating fishers’ willingness to be involved. The resultant maps are easily accessible and instantly informative, providing a very clear visual indication of which areas are most important for the fishers. The maps also provide quantitative data, which can be used to analyse the relative impact of different management options on the fishing industry and can be incorporated into planning software, such as MARXAN, to ensure that conservation goals can be met at minimum negative impact to the industry. This research shows how spatial access priority mapping can facilitate the early engagement of fishers and the ready incorporation of their priorities into the decision-making process in a transparent, quantitative way
    corecore