385 research outputs found
Neighborhood level risk factors for type 1 diabetes in youth: the SEARCH case-control study
<p>Abstract</p> <p>Background</p> <p>European ecologic studies suggest higher socioeconomic status is associated with higher incidence of type 1 diabetes. Using data from a case-control study of diabetes among racially/ethnically diverse youth in the United States (U.S.), we aimed to evaluate the independent impact of neighborhood characteristics on type 1 diabetes risk. Data were available for 507 youth with type 1 diabetes and 208 healthy controls aged 10-22 years recruited in South Carolina and Colorado in 2003-2006. Home addresses were used to identify Census tracts of residence. Neighborhood-level variables were obtained from 2000 U.S. Census. Multivariate generalized linear mixed models were applied.</p> <p>Results</p> <p>Controlling for individual risk factors (age, gender, race/ethnicity, infant feeding, birth weight, maternal age, number of household residents, parental education, income, state), higher neighborhood household income (p = 0.005), proportion of population in managerial jobs (p = 0.02), with at least high school education (p = 0.005), working outside the county (p = 0.04) and vehicle ownership (p = 0.03) were each independently associated with increased odds of type 1 diabetes. Conversely, higher percent minority population (p = 0.0003), income from social security (p = 0.002), proportion of crowded households (0.0497) and poverty (p = 0.008) were associated with a decreased odds.</p> <p>Conclusions</p> <p>Our study suggests that neighborhood characteristics related to greater affluence, occupation, and education are associated with higher type 1 diabetes risk. Further research is needed to understand mechanisms underlying the influence of neighborhood context.</p
Pleosporales
One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
The SMART personalised self-management system for congestive heart failure: results of a realist evaluation
Background: Technology has the potential to provide support for self-management to people with congestive heart failure (CHF). This paper describes the results of a realist evaluation of the SMART Personalised Self-Management System (PSMS) for CHF. Methods: The PSMS was used, at home, by seven people with CHF. Data describing system usage and usability as well as questionnaire and interview data were evaluated in terms of the context, mechanism and outcome hypotheses (CMOs) integral to realist evaluation. Results: The CHF PSMS improved heart failure related knowledge in those with low levels of knowledge at baseline, through providing information and quizzes. Furthermore, participants perceived the self-regulatory aspects of the CHF PSMS as being useful in encouraging daily walking. The CMOs were revised to describe the context of use, and how this influences both the mechanisms and the outcomes. Conclusions: Participants with CHF engaged with the PSMS despite some technological problems. Some positive effects on knowledge were observed as well as the potential to assist with changing physical activity behaviour. Knowledge of CHF and physical activity behaviour change are important self-management targets for CHF, and this study provides evidence to direct the further development of a technology to support these targets. Keywords: Technology, Realist evaluation, User-centred design, Heart failure, Self-managemen
Essential Noninvasive Multimodality Neuromonitoring for the Critically Ill Patient
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2020. Other selected articles can be found online at . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from
Protein-protein interactions in the RPS4/RRS1 immune receptor complex
Plant NLR (Nucleotide-binding domain and Leucine-rich Repeat) immune receptor proteins are encoded by Resistance (R) genes and confer specific resistance to pathogen races that carry the corresponding recognized effectors. Some NLR proteins function in pairs, forming receptor complexes for the perception of specific effectors. We show here that the Arabidopsis RPS4 and RRS1 NLR proteins are both required to make an authentic immune complex. Over-expression of RPS4 in tobacco or in Arabidopsis results in constitutive defense activation; this phenotype is suppressed in the presence of RRS1. RRS1 protein co-immunoprecipitates (co-IPs) with itself in the presence or absence of RPS4, but in contrast, RPS4 does not associate with itself in the absence of RRS1. In the presence of RRS1, RPS4 associates with defense signaling regulator EDS1 solely in the nucleus, in contrast to the extra-nuclear location found in the absence of RRS1. The AvrRps4 effector does not disrupt RPS4-EDS1 association in the presence of RRS1. In the absence of RRS1, AvrRps4 interacts with EDS1, forming nucleocytoplasmic aggregates, the formation of which is disturbed by the co-expression of PAD4 but not by SAG101. These data indicate that the study of an immune receptor protein complex in the absence of all components can result in misleading inferences, and reveals an NLR complex that dynamically interacts with the immune regulators EDS1/PAD4 or EDS1/SAG101, and with effectors, during the process by which effector recognition is converted to defense activation
Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen
Accelerated adaptive evolution is a hallmark of plant-pathogen interactions. Plant intracellular immune receptors (NLRs) often occur as allelic series with differential pathogen specificities. The determinants of this specificity remain largely unknown. Here, we unravelled the biophysical and structural basis of expanded specificity in the allelic rice NLR Pik, which responds to the effector AVR-Pik from the rice blast pathogen Magnaporthe oryzae. Rice plants expressing the Pikm allele resist infection by blast strains expressing any of three AVR-Pik effector variants, whereas those expressing Pikp only respond to one. Unlike Pikp, the integrated heavy metal-associated (HMA) domain of Pikm binds with high affinity to each of the three recognized effector variants, and variation at binding interfaces between effectors and Pikp-HMA or Pikm-HMA domains encodes specificity. By understanding how co-evolution has shaped the response profile of an allelic NLR, we highlight how natural selection drove the emergence of new receptor specificities. This work has implications for the engineering of NLRs with improved utility in agriculture
New Suggestions for the Mechanical Control of Bone Remodeling
Bone is constantly renewed over our lifetime through the process of bone (re)modeling. This process is important for bone to allow it to adapt to its mechanical environment and to repair damage from everyday life. Adaptation is thought to occur through the mechanosensitive response controlling the bone-forming and -resorbing cells. This report shows a way to extract quantitative information about the way remodeling is controlled using computer simulations. Bone resorption and deposition are described as two separate stochastic processes, during which a discrete bone packet is removed or deposited from the bone surface. The responses of the bone-forming and -resorbing cells to local mechanical stimuli are described by phenomenological remodeling rules. Our strategy was to test different remodeling rules and to evaluate the time evolution of the trabecular architecture in comparison to what is known from μ-CT measurements of real bone. In particular, we tested the reaction of virtual bone to standard therapeutic strategies for the prevention of bone deterioration, i.e., physical activity and medications to reduce bone resorption. Insensitivity of the bone volume fraction to reductions in bone resorption was observed in the simulations only for a remodeling rule including an activation barrier for the mechanical stimulus above which bone deposition is switched on. This is in disagreement with the commonly used rules having a so-called lazy zone
- …