602 research outputs found
Surfactant status and respiratory outcome in premature infants receiving late surfactant treatment.
BACKGROUND:Many premature infants with respiratory failure are deficient in surfactant, but the relationship to occurrence of bronchopulmonary dysplasia (BPD) is uncertain. METHODS:Tracheal aspirates were collected from 209 treated and control infants enrolled at 7-14 days in the Trial of Late Surfactant. The content of phospholipid, surfactant protein B, and total protein were determined in large aggregate (active) surfactant. RESULTS:At 24 h, surfactant treatment transiently increased surfactant protein B content (70%, p < 0.01), but did not affect recovered airway surfactant or total protein/phospholipid. The level of recovered surfactant during dosing was directly associated with content of surfactant protein B (r = 0.50, p < 0.00001) and inversely related to total protein (r = 0.39, p < 0.0001). For all infants, occurrence of BPD was associated with lower levels of recovered large aggregate surfactant, higher protein content, and lower SP-B levels. Tracheal aspirates with lower amounts of recovered surfactant had an increased proportion of small vesicle (inactive) surfactant. CONCLUSIONS:We conclude that many intubated premature infants are deficient in active surfactant, in part due to increased intra-alveolar metabolism, low SP-B content, and protein inhibition, and that the severity of this deficit is predictive of BPD. Late surfactant treatment at the frequency used did not provide a sustained increase in airway surfactant
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
Evidence for an increase in cosmogenic 10Be during a geomagnetic reversal
Reversals in the geomagnetic field, which occur every few hundred thousand years, represent a dramatic change in the Earth's environment. Although there is no satisfactory theory for such reversals, it is generally accepted that the dipole field intensity decreases to <20% of its 'normal' value for a few thousand years during the change in direction. Because the galactic and solar cosmic rays which impinge on the Earth's atmosphere are charged, a significant fraction (about half) of them are deflected by the geomagnetic field. At the time of a reversal, this magnetic shielding is greatly reduced, and it has been suggested that the increased flux of high-energy particles could have effects on evolutionary or climatic processes. For example, the statistically significant coincidence in levels of some marine faunal extinctions and reversal boundaries in ocean sediments could be caused, directly or indirectly, by the decreased geomagnetic intensity during the reversal. We report here evidence in marine sediments for an increase in cosmogenic 10Be production in the Earth's atmosphere during the Brunhes-Matuyama reversal 730,000 yr ago. In addition to confirming an increase in cosmogenic isotope production, the results provide information on the magnitude and duration of the geomagnetic intensity decrease during such an event, and the depth at which remanent magnetism is acquired in marine sediments
Field template-based design and biological evaluation of new sphingosine kinase 1 inhibitors
Purpose: Sphingosine kinase 1 (SK1) is a protooncogenic enzyme expressed in many human tumours and is associated with chemoresistance and poor prognosis. It is a potent therapy target and its inhibition chemosensitises solid tumours. Despite recent advances in SK1 inhibitors synthesis and validation, their clinical safety and chemosensitising options are not well described. In this study, we have designed, synthesised and tested a new specific SK1 inhibitor with a low toxicity profile. Methods: Field template molecular modelling was used for compound design. Lead compounds were tested in cell and mouse cancer models. Results: Field template analysis of three known SK1 inhibitors, SKI-178, 12aa and SK1-I, was performed and compound screening identified six potential new SK1 inhibitors. SK1 activity assays in both cell-free and in vitro settings showed that two compounds were effective SK1 inhibitors. Compound SK-F has potently decreased cancer cell viability in vitro and sensitised mouse breast tumours to docetaxel (DTX) in vivo, without significant whole-body toxicity. Conclusion: Through field template screening, we have identified a new SK1 inhibitor, SK-F, which demonstrated antitumour activity in vitro and in vivo without overt toxicity when combined with DTX
Current challenges facing the assessment of the allergenic capacity of food allergens in animal models
Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured
Regulating STING in health and disease.
The presence of cytosolic double-stranded DNA molecules can trigger multiple innate immune signalling pathways which converge on the activation of an ER-resident innate immune adaptor named "STimulator of INterferon Genes (STING)". STING has been found to mediate type I interferon response downstream of cyclic dinucleotides and a number of DNA and RNA inducing signalling pathway. In addition to its physiological function, a rapidly increasing body of literature highlights the role for STING in human disease where variants of the STING proteins, as well as dysregulated STING signalling, have been implicated in a number of inflammatory diseases. This review will summarise the recent structural and functional findings of STING, and discuss how STING research has promoted the development of novel therapeutic approaches and experimental tools to improve treatment of tumour and autoimmune diseases
Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood
Although recent anthropogenic effects on the global nitrogen (N) cycle have been significant, the consequences of increased anthropogenic N on terrestrial ecosystems are unclear. Studies of the impact of increased reactive N on forest ecosystems—impacts on hydrologic and gaseous loss pathways, retention capacity, and even net primary productivity— have been particularly limited by a lack of long-term baseline biogeochemical data. Stable nitrogen isotope analysis (ratio of ¹⁵N to ¹⁴N, termed δ¹⁵N) of wood chronologies offers the potential to address changes in ecosystem N cycling on millennial timescales and across broad geographic regions. Currently, nearly 50 studies have been published utilizing wood δ¹⁵N records; however, there are significant differences in study design and data interpretation. Here, we identify four categories of wood δ¹⁵N studies, summarize the common themes and primary findings of each category, identify gaps in the spatial and temporal scope of current wood δ¹⁵N chronologies, and synthesize methodological frameworks for future research by presenting eight suggestions for common methodological approaches and enhanced integration across studies. Wood δ¹⁵N records have the potential to provide valuable information for interpreting modern biogeochemical cycling. This review serves to advance the utility of this technique for long-term biogeochemical reconstructions
Justice and Corporate Governance: New Insights from Rawlsian Social Contract and Sen’s Capabilities Approach
By considering what we identify as a problem inherent in the ‘nature of the firm’—the risk of abuse of authority—we propound the conception of a social contract theory of the firm which is truly Rawlsian in its inspiration. Hence, we link the social contract theory of the firm (justice at firm’s level) with the general theory of justice (justice at society’s level). Through this path, we enter the debate about whether firms can be part of Rawlsian theory of justice showing that corporate governance principles enter the “basic structure.” Finally, we concur with Sen’s aim to broaden the realm of social justice beyond what he calls the ‘transcendental institutional perfectionism’ of Rawls’ theory. We maintain the contractarian approach to justice but introduce Sen’s capability concept as an element of the constitutional and post-constitutional contract model of institutions with special reference to corporate governance. Accordingly, rights over primary goods and capabilities are (constitutionally) granted by the basic institutions of society, but many capabilities have to be turned into the functionings of many stakeholders through the operation of firms understood as post-constitutional institutional domains. The constitutional contract on the distribution of primary goods and capabilities should then shape the principles of corporate governance so that at post-constitutional level anyone may achieve her/his functionings in the corporate domain by exercising such capabilities. In the absence of such a condition, post-constitutional contracts would distort the process that descends from constitutional rights and capabilities toward social outcomes
- …
