429 research outputs found

    Stress Drops on the Blanco Oceanic Transform Fault from Interstation Phase Coherence

    Get PDF
    Oceanic transform faults display a wide range of earthquake stress drops, large aseismic slip, and along‐strike variation in seismic coupling. We use and further develop a phase coherence‐based method to calculate and analyze stress drops of 61 M≥5.0 events between 2000 and 2016 on the Blanco fault, off the coast of Oregon. With this method, we estimate earthquake rupture extents by examining how apparent source time functions (ASTFs) vary between stations. The variation is caused by the generation of seismic waves at different locations along the rupture, which arrive at different times depending on station location. We isolate ASTFs at a range of stations by comparing seismograms of collocated earthquakes and then use the interstation ASTF coherence to infer rupture extent and stress drop. We examine how our analysis is influenced by various factors, including poor trace alignment, relative earthquake locations, focal mechanism variation, azimuthal distribution of stations, and depth phase arrivals. We find that as alignment accuracy decreases or distance between earthquakes increases, coherence is reduced, but coherence is unaffected by focal mechanism variation or depth phase arrivals for our dataset. We calibrate the coherence–rupture extent relationship based on the azimuthal distribution of stations. We find the phase coherence method can be used to estimate stress drops for offshore earthquakes, but is limited to M≥5.0 earthquakes for the Blanco fault due to poor trace alignment accuracy. The median stress drop on the Blanco fault is 8 MPa (with 95% confidence limits of 6–12 MPa) for 61 earthquakes. Stress drops are a factor of 1.7 (95% confidence limits 0.8–3.5) lower on the more aseismic northwest segment of the Blanco fault. These lower stress drops could be linked to reduced healing time due to higher temperatures, which reduce the depth of the seismogenic zone and shorten the seismic cycle

    Organizational factors and depression management in community-based primary care settings

    Get PDF
    Abstract Background Evidence-based quality improvement models for depression have not been fully implemented in routine primary care settings. To date, few studies have examined the organizational factors associated with depression management in real-world primary care practice. To successfully implement quality improvement models for depression, there must be a better understanding of the relevant organizational structure and processes of the primary care setting. The objective of this study is to describe these organizational features of routine primary care practice, and the organization of depression care, using survey questions derived from an evidence-based framework. Methods We used this framework to implement a survey of 27 practices comprised of 49 unique offices within a large primary care practice network in western Pennsylvania. Survey questions addressed practice structure (e.g., human resources, leadership, information technology (IT) infrastructure, and external incentives) and process features (e.g., staff performance, degree of integrated depression care, and IT performance). Results The results of our survey demonstrated substantial variation across the practice network of organizational factors pertinent to implementation of evidence-based depression management. Notably, quality improvement capability and IT infrastructure were widespread, but specific application to depression care differed between practices, as did coordination and communication tasks surrounding depression treatment. Conclusions The primary care practices in the network that we surveyed are at differing stages in their organization and implementation of evidence-based depression management. Practical surveys such as this may serve to better direct implementation of these quality improvement strategies for depression by improving understanding of the organizational barriers and facilitators that exist within both practices and practice networks. In addition, survey information can inform efforts of individual primary care practices in customizing intervention strategies to improve depression management.http://deepblue.lib.umich.edu/bitstream/2027.42/78269/1/1748-5908-4-84.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78269/2/1748-5908-4-84-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78269/3/1748-5908-4-84.pdfPeer Reviewe

    Classification and evolutionary history of the single-strand annealing proteins, RecT, Redβ, ERF and RAD52

    Get PDF
    BACKGROUND: The DNA single-strand annealing proteins (SSAPs), such as RecT, Redβ, ERF and Rad52, function in RecA-dependent and RecA-independent DNA recombination pathways. Recently, they have been shown to form similar helical quaternary superstructures. However, despite the functional similarities between these diverse SSAPs, their actual evolutionary affinities are poorly understood. RESULTS: Using sensitive computational sequence analysis, we show that the RecT and Redβ proteins, along with several other bacterial proteins, form a distinct superfamily. The ERF and Rad52 families show no direct evolutionary relationship to these proteins and define novel superfamilies of their own. We identify several previously unknown members of each of these superfamilies and also report, for the first time, bacterial and viral homologs of Rad52. Additionally, we predict the presence of aberrant HhH modules in RAD52 that are likely to be involved in DNA-binding. Using the contextual information obtained from the analysis of gene neighborhoods, we provide evidence of the interaction of the bacterial members of each of these SSAP superfamilies with a similar set of DNA repair/recombination protein. These include different nucleases or Holliday junction resolvases, the ABC ATPase SbcC and the single-strand-binding protein. We also present evidence of independent assembly of some of the predicted operons encoding SSAPs and in situ displacement of functionally similar genes. CONCLUSIONS: There are three evolutionarily distinct superfamilies of SSAPs, namely the RecT/Redβ, ERF, and RAD52, that have different sequence conservation patterns and predicted folds. All these SSAPs appear to be primarily of bacteriophage origin and have been acquired by numerous phylogenetically distant cellular genomes. They generally occur in predicted operons encoding one or more of a set of conserved DNA recombination proteins that appear to be the principal functional partners of the SSAPs

    Responses of marine benthic microalgae to elevated CO<inf>2</inf>

    Get PDF
    Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. © 2011 Springer-Verlag

    Local Function Conservation in Sequence and Structure Space

    Get PDF
    We assess the variability of protein function in protein sequence and structure space. Various regions in this space exhibit considerable difference in the local conservation of molecular function. We analyze and capture local function conservation by means of logistic curves. Based on this analysis, we propose a method for predicting molecular function of a query protein with known structure but unknown function. The prediction method is rigorously assessed and compared with a previously published function predictor. Furthermore, we apply the method to 500 functionally unannotated PDB structures and discuss selected examples. The proposed approach provides a simple yet consistent statistical model for the complex relations between protein sequence, structure, and function. The GOdot method is available online (http://godot.bioinf.mpi-inf.mpg.de)

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation

    Structural genomics target selection for the New York consortium on membrane protein structure

    Get PDF
    The New York Consortium on Membrane Protein Structure (NYCOMPS), a part of the Protein Structure Initiative (PSI) in the USA, has as its mission to establish a high-throughput pipeline for determination of novel integral membrane protein structures. Here we describe our current target selection protocol, which applies structural genomics approaches informed by the collective experience of our team of investigators. We first extract all annotated proteins from our reagent genomes, i.e. the 96 fully sequenced prokaryotic genomes from which we clone DNA. We filter this initial pool of sequences and obtain a list of valid targets. NYCOMPS defines valid targets as those that, among other features, have at least two predicted transmembrane helices, no predicted long disordered regions and, except for community nominated targets, no significant sequence similarity in the predicted transmembrane region to any known protein structure. Proteins that feed our experimental pipeline are selected by defining a protein seed and searching the set of all valid targets for proteins that are likely to have a transmembrane region structurally similar to that of the seed. We require sequence similarity aligning at least half of the predicted transmembrane region of seed and target. Seeds are selected according to their feasibility and/or biological interest, and they include both centrally selected targets and community nominated targets. As of December 2008, over 6,000 targets have been selected and are currently being processed by the experimental pipeline. We discuss how our target list may impact structural coverage of the membrane protein space

    Identification of the PDI-Family Member ERp90 as an Interaction Partner of ERFAD

    Get PDF
    In the endoplasmic reticulum (ER), members of the protein disulfide isomerase (PDI) family perform critical functions during protein maturation. Herein, we identify the previously uncharacterized PDI-family member ERp90. In cultured human cells, we find ERp90 to be a soluble ER-luminal glycoprotein that comprises five potential thioredoxin (Trx)-like domains. Mature ERp90 contains 10 cysteine residues, of which at least some form intramolecular disulfides. While none of the Trx domains contain a canonical Cys-Xaa-Xaa-Cys active-site motif, other conserved cysteines could endow the protein with redox activity. Importantly, we show that ERp90 co-immunoprecipitates with ERFAD, a flavoprotein involved in ER-associated degradation (ERAD), through what is most likely a direct interaction. We propose that the function of ERp90 is related to substrate recruitment or delivery to the ERAD retrotranslocation machinery by ERFAD
    corecore