584 research outputs found

    Genomic comparison of two O111:H<sup>-</sup> enterohemorrhagic Escherichia coli isolates from a historic hemolytic-uremic syndrome outbreak in Australia

    Full text link
    © 2016, American Society for Microbiology. Enterohemorrhagic Escherichia coli (EHEC) is an important cause of diarrhea and hemolytic-uremic syndrome (HUS) worldwide. Australia's worst outbreak of HUS occurred in Adelaide in 1995 and was one of the first major HUS outbreaks attributed to a non-O157 Shiga-toxigenic E. coli (STEC) strain. Molecular analyses conducted at the time suggested that the outbreak was caused by an O111:H- clone, with strains from later in the outbreak harboring an extra copy of the genes encoding the potent Shiga toxin 2 (Stx2). Two decades later, we have used next-generation sequencing to compare two isolates from early and late in this important outbreak. We analyzed genetic content, single-nucleotide polymorphisms (SNPs), and prophage insertion sites; for the latter, we demonstrate how paired-end sequence data can be leveraged to identify such insertion sites. The two strains are genetically identical except for six SNP differences and the presence of not one but two additional Stx2-converting prophages in the later isolate. Isolates from later in the outbreak were associated with higher levels of morbidity, suggesting that the presence of the additional Stx2-converting prophages is significant in terms of the virulence of this clone

    Autoinducer 2 signalling via the phosphotransferase FruA drives galactose utilization by Streptococcus pneumoniae resulting in hypervirulence

    Get PDF
    Communication between bacterial cells is crucial for the coordination of diverse cellular processes that facilitate environmental adaptation and, in the case of pathogenic species, virulence. This is achieved by the secretion and detection of small signaling molecules called autoinducers, a process termed quorum sensing. To date, the only signaling molecule recognized by both Gram-positive and Gramnegative bacteria is autoinducer 2 (AI-2), synthesized by the metabolic enzyme LuxS (S-ribosylhomocysteine lyase) as a by-product of the activated methyl cycle. Homologues of LuxS are ubiquitous in bacteria, suggesting a key role in interspecies, as well as intraspecies, communication. Gram-negative bacteria sense and respond to AI-2 via the Lsr ABC transporter system or by the LuxP/LuxQ phosphorelay system. However, homologues of these systems are absent from Gram-positive bacteria and the AI-2 receptor is unknown. Here we show that in the major human pathogen Streptococcus pneumoniae, sensing of exogenous AI-2 is dependent on FruA, a fructose-specific phosphoenolpyruvate-phosphotransferase system that is highly conserved in Gram-positive pathogens. Importantly, AI-2 signaling via FruA enables the bacterium to utilize galactose as a carbon source and upregulates the Leloir pathway, thereby leading to increased production of capsular polysaccharide and a hypervirulent phenotype

    Where is my sink? Reconstruction of landscape development in 1 southwestern Africa since the Late Jurassic

    Get PDF
    Quantifying the rates and timing of landscape denudation provides a means to constrain sediment flux through time to offshore sedimentary basins. The Late Mesozoic evolution of drainage basins in southern Africa is poorly constrained despite the presence of several onshore and offshore sedimentary basins. A novel approach has been developed to calculate the volume of material eroded since the Late Jurassic at different time steps by constructing structural cross-sections and extrapolating thicknesses of eroded material. Using different assumptions, the calculated volumes of material eroded from southwestern Africa range from 2.52x10⁶ km³ (11.3 km of vertical thickness removed) to 8.87 x10⁵ km³ (4.0 km of vertical thickness removed). For the southward draining systems alone, the calculated removal of 7.81 x10⁵ – 2.60 x10⁵ km³ of material is far greater than the volumes of sediment recorded in offshore sedimentary basins (268 500 km³). Reconstruction of the drainage systems using geomorphic indicators and clast provenance of the Uitenhage Group, as well as extrapolated surface exposure ages, indicate the southern draining systems were active from the Late Jurassic with coeval activity in axial and transverse drainage systems. The calculated volumes are tied to published apatite fission track (AFT) dates to constrain the changes in exhumation rate through time (using multiple scenarios), which indicate a significant amount of Early Cretaceous exhumation (up to 1.26 x10⁶ km³, equivalent to 5.70km of vertical thickness). For the first time, this has permitted long-term landscape evolution to be used to support the interpretation that some of the ‘missing’ sediment was deposited in sedimentary basins on the Falkland Plateau as it moved past southern Africa during the Early Cretaceous. This implies that in this instance, the sinks are separated from their source areas by ~6000 km

    A dynamic relationship between mucosal T helper type 17 and regulatory T-cell populations in nasopharynx evolves with age and associates with the clearance of pneumococcal carriage in humans

    Get PDF
    Pneumococcal carriage is common in young children, which may account for the high incidence of disease in this age group. Host factors determining the clearance of carriage in humans remain unclear. We aimed to study the relationships between T helper type 17 (Th17) and Foxp3(+) regulatory T (Treg) cells in nasopharynx-associated lymphoid tissue (NALT) and carriage in children and adults. Frequencies of Th17 and Treg cells in NALT were analysed by flow cytometry in association with age and pneumococcal carriage status. Cytokine responses following pneumococcal stimulation were analysed by cytometric beads array. The frequencies of Th17 and Treg cells in NALT were inversely correlated (R -0.60). Whereas Treg cell frequency decreased with age (R -0.63), both Th17 and the Th17: Treg ratio increased with age (R 0.62 and R 0.64, respectively). Also, the Th17: Treg ratio was higher in carriage-negative than in carriage-positive children (p <0.01). Pneumococcal stimulation of tonsillar cells increased both Th17 and Treg cell numbers, but the Th17: Treg ratio and pattern of cytokine responses differed between carriage-negative and carriage-positive children. The former showed markedly higher Th17: Treg and interleukin-17A: interleukin-10 ratios than in the latter (p <0.01). Pneumococcal stimulation also induces Th17, although the capacity of this Th17 differentiation from naive T cells of young children was low, but increased with age. We demonstrated a dynamic relationship between Th17 and Treg cells in human nasopharynx that evolves with age. The balance between Th17 and Treg cells in NALT appears to be a major host factor closely associated with the clearance of Streptococcus pneumoniae from the nasopharynx

    Evaluating the potential for the environmentally sustainable control of foot and mouth disease in Sub-Saharan Africa

    Get PDF
    Strategies to control transboundary diseases have in the past generated unintended negative consequences for both the environment and local human populations. Integrating perspectives from across disciplines, including livestock, veterinary and conservation sectors, is necessary for identifying disease control strategies that optimise environmental goods and services at the wildlife-livestock interface. Prompted by the recent development of a global strategy for the control and elimination of foot-and-mouth disease (FMD), this paper seeks insight into the consequences of, and rational options for potential FMD control measures in relation to environmental, conservation and human poverty considerations in Africa. We suggest a more environmentally nuanced process of FMD control that safe-guards the integrity of wild populations and the ecosystem dynamics on which human livelihoods depend while simultaneously improving socio-economic conditions of rural people. In particular, we outline five major issues that need to be considered: 1) improved understanding of the different FMD viral strains and how they circulate between domestic and wildlife populations; 2) an appreciation for the economic value of wildlife for many African countries whose presence might preclude the country from ever achieving an FMD-free status; 3) exploring ways in which livestock production can be improved without compromising wildlife such as implementing commodity-based trading schemes; 4) introducing a participatory approach involving local farmers and the national veterinary services in the control of FMD; and 5) finally the possibility that transfrontier conservation might offer new hope of integrating decision-making at the wildlife-livestock interface

    A Trap-Door Mechanism for Zinc Acquisition by Streptococcus pneumoniae AdcA.

    Get PDF
    Zinc is an essential element in all domains of life. Nonetheless, how prokaryotes achieve selective acquisition of zinc from the extracellular environment remains poorly understood. Here, we elucidate a novel mechanism for zinc-binding in AdcA, a solute-binding protein of Streptococcus pneumoniae. Crystal structure analyses reveal the two-domain organization of the protein and show that only the N-terminal domain (AdcAN) is necessary for zinc import. Zinc binding induces only minor changes in the global protein conformation of AdcA and stabilizes a highly mobile loop within the AdcAN domain. This loop region, which is conserved in zinc-specific solute-binding proteins, facilitates closure of the AdcAN binding site and is crucial for zinc acquisition. Collectively, these findings elucidate the structural and functional basis of selective zinc uptake in prokaryotes. IMPORTANCE Zinc is an essential nutrient for the virulence of bacterial pathogens such as Streptococcus pneumoniae. Many Gram-positive bacteria use a two-domain lipoprotein for zinc acquisition, but how this class of metal-recruiting proteins acquire zinc and interact with the uptake machinery has remained poorly defined. We report the first structure of a two-domain lipoprotein, AdcA from S. pneumoniae, and use computational, spectroscopic, and microbiological approaches to provide new insights into the functional basis of zinc recruitment. Our findings reveal that AdcA employs a novel mechanism for zinc binding that we have termed the “trap-door” mechanism, and we show how the static metal-binding site of the protein, which confers its selectivity for zinc ions, is combined with a dynamic surface element to facilitate zinc recruitment and import into the bacterium. Together, these findings expand our understanding of how bacteria acquire zinc from the environment and provide a foundation for inhibiting this process, through antimicrobial targeting of the dynamic structural elements to block bacterial zinc scavenging

    Continuity Culture: A Key Factor for Building Resilience and Sound Recovery Capabilities

    Get PDF
    This article investigates the extent to which Jordanian service organizations seek to establish continuity culture through testing, training, and updating of their business continuity plans. A survey strategy was adopted in this research. Primary and secondary data were used. Semistructured interviews were conducted with five senior managers from five large Jordanian service organizations registered with the Amman Stock Exchange. The selection of organizations was made on the basis of simple random sampling. Interviews targeted the headquarters only in order to obtain a homogenous sample. Three out of five organizations could be regarded as crisis prepared and have better chances for recovery. The other two organizations exhibited characteristics of standard practice that only emphasizes the recovery aspect of business continuity management (BCM), while paying less attention to establishing resilient cultures and embedding BCM. The findings reveal that the ability to recover following major incidents can be improved by embedding BCM in the culture of the organization and by making BCM an enterprise-wide process. This is one of few meticulous studies that have been undertaken in the Middle East and the first in Jordan to investigate the extent to which service organizations focus on embedding BCM in the organizational culture

    Dietary zinc and the control of Streptococcus pneumoniae infection

    Get PDF
    © 2019 Eijkelkamp et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Human zinc deficiency increases susceptibility to bacterial infection. Although zinc supplementation therapies can reduce the impact of disease, the molecular basis for protection remains unclear. Streptococcus pneumoniae is a major cause of bacterial pneumonia, which is prevalent in regions of zinc deficiency. We report that dietary zinc levels dictate the outcome of S. pneumoniae infection in a murine model. Dietary zinc restriction impacts murine tissue zinc levels with distribution post-infection altered, and S. pneumoniae virulence and infection enhanced. Although the activation and infiltration of murine phagocytic cells was not affected by zinc restriction, their efficacy of bacterial control was compromised. S. pneumoniae was shown to be highly sensitive to zinc intoxication, with this process impaired in zinc restricted mice and isolated phagocytic cells. Collectively, these data show how dietary zinc deficiency increases sensitivity to S. pneumoniae infection while revealing a role for zinc as a component of host antimicrobial defences
    corecore