985 research outputs found

    Data-driven approach to optimum wavelength selection for diffuse optical imaging

    Get PDF
    The production of accurate and independent images of the changes in concentration of oxyhemoglobin and deoxyhemoglobin by diffuse optical imaging is heavily dependent on which wavelengths of near-infrared light are chosen to interrogate the target tissue. Although wavelengths can be selected by theoretical methods, in practice the accuracy of reconstructed images will be affected by wavelength-specific and system-specific factors such as laser source power and detector sensitivity. We describe the application of a data-driven approach to optimum wavelength selection for the second generation of University College London's multichannel, time-domain optical tomography system (MONSTIR II). By performing a functional activation experiment using 12 different wavelengths between 690 and 870 nm, we were able to identify the combinations of 2, 3, and 4 wavelengths which most accurately reproduced the results obtained using all 12 wavelengths via an imaging approach. Our results show that the set of 2, 3, and 4 wavelengths which produce the most accurate images of functional activation are [770, 810], [770, 790, 850], and [730, 770, 810, 850] respectively, but also that the system is relatively robust to wavelength selection within certain limits. Although these results are specific to MONSTIR II, the approach we developed can be applied to other multispectral near-infrared spectroscopy and optical imaging systems

    A review of the methodological features of systematic reviews in maternal medicine

    Get PDF
    Background In maternal medicine, research evidence is scattered making it difficult to access information for clinical decision making. Systematic reviews of good methodological quality are essential to provide valid inferences and to produce usable evidence summaries to guide management. This review assesses the methodological features of existing systematic reviews in maternal medicine, comparing Cochrane and non-Cochrane reviews in maternal medicine. Methods Medline, Embase, Database of Reviews of Effectiveness (DARE) and Cochrane Database of Systematic Reviews (CDSR) were searched for relevant reviews published between 2001 and 2006. We selected those reviews in which a minimum of two databases were searched and the primary outcome was related to the maternal condition. The selected reviews were assessed for information on framing of question, literature search and methods of review. Results Out of 2846 citations, 68 reviews were selected. Among these, 39 (57%) were Cochrane reviews. Most of the reviews (50/68, 74%) evaluated therapeutic interventions. Overall, 54/68 (79%) addressed a focussed question. Although 64/68 (94%) reviews had a detailed search description, only 17/68 (25%) searched without language restriction. 32/68 (47%) attempted to include unpublished data and 11/68 (16%) assessed for the risk of missing studies quantitatively. The reviews had deficiencies in the assessment of validity of studies and exploration for heterogeneity. When compared to Cochrane reviews, other reviews were significantly inferior in specifying questions (OR 20.3, 95% CI 1.1–381.3, p = 0.04), framing focussed questions (OR 30.9, 95% CI 3.7- 256.2, p = 0.001), use of unpublished data (OR 5.6, 95% CI 1.9–16.4, p = 0.002), assessment for heterogeneity (OR 38.1, 95%CI 2.1, 688.2, p = 0.01) and use of meta-analyses (OR 3.7, 95% CI 1.3–10.8, p = 0.02). Conclusion This study identifies areas which have a strong influence on maternal morbidity and mortality but lack good quality systematic reviews. Overall quality of the existing systematic reviews was variable. Cochrane reviews were of better quality as compared to other reviews. There is a need for good quality systematic reviews to inform practice in maternal medicine

    Use of QSARs in international decision-making frameworks to predict health effects of chemical substances

    Get PDF
    This article is a review of the use of quantitative (and qualitative) structure-activity relationships (QSARs and SARs) by regulatory agencies and authorities to predict acute toxicity, mutagenicity, carcinogenicity, and other health effects. A number of SAR and QSAR applications, by regulatory agencies and authorities, are reviewed. These include the use of simple QSAR analyses, as well as the use of multivariate QSARs, and a number of different expert system approaches

    Branching dendrites with resonant membrane: a “sum-over-trips” approach

    Get PDF
    Dendrites form the major components of neurons. They are complex branching structures that receive and process thousands of synaptic inputs from other neurons. It is well known that dendritic morphology plays an important role in the function of dendrites. Another important contribution to the response characteristics of a single neuron comes from the intrinsic resonant properties of dendritic membrane. In this paper we combine the effects of dendritic branching and resonant membrane dynamics by generalising the “sum-over-trips” approach (Abbott et al. in Biol Cybernetics 66, 49–60 1991). To illustrate how this formalism can shed light on the role of architecture and resonances in determining neuronal output we consider dual recording and reconstruction data from a rat CA1 hippocampal pyramidal cell. Specifically we explore the way in which an Ih current contributes to a voltage overshoot at the soma

    The role of ongoing dendritic oscillations in single-neuron dynamics

    Get PDF
    The dendritic tree contributes significantly to the elementary computations a neuron performs while converting its synaptic inputs into action potential output. Traditionally, these computations have been characterized as temporally local, near-instantaneous mappings from the current input of the cell to its current output, brought about by somatic summation of dendritic contributions that are generated in spatially localized functional compartments. However, recent evidence about the presence of oscillations in dendrites suggests a qualitatively different mode of operation: the instantaneous phase of such oscillations can depend on a long history of inputs, and under appropriate conditions, even dendritic oscillators that are remote may interact through synchronization. Here, we develop a mathematical framework to analyze the interactions of local dendritic oscillations, and the way these interactions influence single cell computations. Combining weakly coupled oscillator methods with cable theoretic arguments, we derive phase-locking states for multiple oscillating dendritic compartments. We characterize how the phase-locking properties depend on key parameters of the oscillating dendrite: the electrotonic properties of the (active) dendritic segment, and the intrinsic properties of the dendritic oscillators. As a direct consequence, we show how input to the dendrites can modulate phase-locking behavior and hence global dendritic coherence. In turn, dendritic coherence is able to gate the integration and propagation of synaptic signals to the soma, ultimately leading to an effective control of somatic spike generation. Our results suggest that dendritic oscillations enable the dendritic tree to operate on more global temporal and spatial scales than previously thought

    Environmental Factors in the Relapse and Recurrence of Inflammatory Bowel Disease:A Review of the Literature

    Get PDF
    The causes of relapse in patients with Crohn's disease (CD) and ulcerative colitis (UC) are largely unknown. This paper reviews the epidemiological and clinical data on how medications (non-steroidal anti-inflammatory drugs, estrogens and antibiotics), lifestyle factors (smoking, psychological stress, diet and air pollution) may precipitate clinical relapses and recurrence. Potential biological mechanisms include: increasing thrombotic tendency, imbalances in prostaglandin synthesis, alterations in the composition of gut microbiota, and mucosal damage causing increased permeability

    A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition

    Get PDF
    Memories are believed to be represented in the synaptic pathways of vastly interconnected networks of neurons. The plasticity of synapses, that is, their strengthening and weakening depending on neuronal activity, is believed to be the basis of learning and establishing memories. An increasing number of studies indicate that endocannabinoids have a widespread action on brain function through modulation of synap–tic transmission and plasticity. Recent experimental studies have characterised the role of endocannabinoids in mediating both short- and long-term synaptic plasticity in various brain regions including the hippocampus, a brain region strongly associated with cognitive functions, such as learning and memory. Here, we present a biophysically plausible model of cannabinoid retrograde signalling at the synaptic level and investigate how this signalling mediates depolarisation induced suppression of inhibition (DSI), a prominent form of shortterm synaptic depression in inhibitory transmission in hippocampus. The model successfully captures many of the key characteristics of DSI in the hippocampus, as observed experimentally, with a minimal yet sufficient mathematical description of the major signalling molecules and cascades involved. More specifically, this model serves as a framework to test hypotheses on the factors determining the variability of DSI and investigate under which conditions it can be evoked. The model reveals the frequency and duration bands in which the post-synaptic cell can be sufficiently stimulated to elicit DSI. Moreover, the model provides key insights on how the state of the inhibitory cell modulates DSI according to its firing rate and relative timing to the post-synaptic activation. Thus, it provides concrete suggestions to further investigate experimentally how DSI modulates and is modulated by neuronal activity in the brain. Importantly, this model serves as a stepping stone for future deciphering of the role of endocannabinoids in synaptic transmission as a feedback mechanism both at synaptic and network level

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability.

    Get PDF
    Febrile seizures are the most common type of developmental seizures, affecting up to 5% of children. Experimental complex febrile seizures involving the immature rat hippocampus led to a persistent lowering of seizure threshold despite an upregulation of inhibition. Here we provide a mechanistic resolution to this paradox by showing that, in the hippocampus of rats that had febrile seizures, the long-lasting enhancement of the widely expressed intrinsic membrane conductance Ih converts the potentiated synaptic inhibition to hyperexcitability in a frequency-dependent manner. The altered gain of this molecular inhibition-excitation converter reveals a new mechanism for controlling the balance of excitation-inhibition in the limbic system. In addition, here we show for the first time that h-channels are modified in a human neurological disease paradigm

    Central synapses release a resource-efficient amount of glutamate.

    Get PDF
    Why synapses release a certain amount of neurotransmitter is poorly understood. We combined patch-clamp electrophysiology with computer simulations to estimate how much glutamate is discharged at two distinct central synapses of the rat. We found that, regardless of some uncertainty over synaptic microenvironment, synapses generate the maximal current per released glutamate molecule while maximizing signal information content. Our result suggests that synapses operate on a principle of resource optimization
    corecore