935 research outputs found

    A numerical modelling and simulation of core-scale sandstone acidizing process: a study on the effect of temperature

    Get PDF
    A wide and comprehensive understanding of the chemical reactions and mechanisms of HBF4 is crucial as it significantly influences its performance in stimulating a sandstone formation. In general, it is well-known that HBF4 is able to provide a deeper penetration into the sandstone matrix before being spent due to its uniquely slow hydrolysis ability to produce HF. In the present study, a 3D numerical modelling and simulation were conducted to examine the capability of HBF4 in enhancing the porosity and permeability of the sandstone matrix. The model is built in COMSOL® Multiphysics commercial software of computational fluid dynamics (CFD) to simulate the acid core flooding process on sandstone core. The model had been validated against the experimental data in the literature. The results matched with the measured plot data very well. The effect of temperature on the performance HBF4 sandstone acidizing is evaluated in this study. The simulation results indicated that at low temperature of 25 °C, HBF4 is not very effective, as justified in its poor porosity and permeability increments of only 1.07 and 1.23, respectively. However, at elevated temperatures, the porosity and permeability enhancement also become increasingly more significant, which showed 1.26 and 2.06, respectively, at 65 °C; and 1.67 and 7.06, respectively, at 105 °C. Therefore, one can conclude that HBF4 acid treatment performed better at elevated temperatures due to increased hydrolysis rate, which is a governing function in HBF4 sandstone acidizing. Overall, this model had provided a reliable alternative to optimize various other parameters of HBF4 acid treatment

    MCL-CAw: A refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure

    Get PDF
    Abstract Background The reconstruction of protein complexes from the physical interactome of organisms serves as a building block towards understanding the higher level organization of the cell. Over the past few years, several independent high-throughput experiments have helped to catalogue enormous amount of physical protein interaction data from organisms such as yeast. However, these individual datasets show lack of correlation with each other and also contain substantial number of false positives (noise). Over these years, several affinity scoring schemes have also been devised to improve the qualities of these datasets. Therefore, the challenge now is to detect meaningful as well as novel complexes from protein interaction (PPI) networks derived by combining datasets from multiple sources and by making use of these affinity scoring schemes. In the attempt towards tackling this challenge, the Markov Clustering algorithm (MCL) has proved to be a popular and reasonably successful method, mainly due to its scalability, robustness, and ability to work on scored (weighted) networks. However, MCL produces many noisy clusters, which either do not match known complexes or have additional proteins that reduce the accuracies of correctly predicted complexes. Results Inspired by recent experimental observations by Gavin and colleagues on the modularity structure in yeast complexes and the distinctive properties of "core" and "attachment" proteins, we develop a core-attachment based refinement method coupled to MCL for reconstruction of yeast complexes from scored (weighted) PPI networks. We combine physical interactions from two recent "pull-down" experiments to generate an unscored PPI network. We then score this network using available affinity scoring schemes to generate multiple scored PPI networks. The evaluation of our method (called MCL-CAw) on these networks shows that: (i) MCL-CAw derives larger number of yeast complexes and with better accuracies than MCL, particularly in the presence of natural noise; (ii) Affinity scoring can effectively reduce the impact of noise on MCL-CAw and thereby improve the quality (precision and recall) of its predicted complexes; (iii) MCL-CAw responds well to most available scoring schemes. We discuss several instances where MCL-CAw was successful in deriving meaningful complexes, and where it missed a few proteins or whole complexes due to affinity scoring of the networks. We compare MCL-CAw with several recent complex detection algorithms on unscored and scored networks, and assess the relative performance of the algorithms on these networks. Further, we study the impact of augmenting physical datasets with computationally inferred interactions for complex detection. Finally, we analyse the essentiality of proteins within predicted complexes to understand a possible correlation between protein essentiality and their ability to form complexes. Conclusions We demonstrate that core-attachment based refinement in MCL-CAw improves the predictions of MCL on yeast PPI networks. We show that affinity scoring improves the performance of MCL-CAw.http://deepblue.lib.umich.edu/bitstream/2027.42/78256/1/1471-2105-11-504.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/2/1471-2105-11-504-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/3/1471-2105-11-504-S2.ZIPhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/4/1471-2105-11-504.pdfPeer Reviewe

    A Type 1 Diabetes Polygenic Score Is Not Associated With Prevalent Type 2 Diabetes in Large Population Studies

    Get PDF
    ContextBoth type 1 diabetes (T1D) and type 2 diabetes (T2D) have significant genetic contributions to risk and understanding their overlap can offer clinical insight.ObjectiveWe examined whether a T1D polygenic score (PS) was associated with a diagnosis of T2D in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium.MethodsWe constructed a T1D PS using 79 known single nucleotide polymorphisms associated with T1D risk. We analyzed 13 792 T2D cases and 14 169 controls from CHARGE cohorts to determine the association between the T1D PS and T2D prevalence. We validated findings in an independent sample of 2256 T2D cases and 27 052 controls from the Mass General Brigham Biobank (MGB Biobank). As secondary analyses in 5228 T2D cases from CHARGE, we used multivariable regression models to assess the association of the T1D PS with clinical outcomes associated with T1D.ResultsThe T1D PS was not associated with T2D both in CHARGE (P = .15) and in the MGB Biobank (P = .87). The partitioned human leukocyte antigens only PS was associated with T2D in CHARGE (OR 1.02 per 1 SD increase in PS, 95% CI 1.01-1.03, P = .006) but not in the MGB Biobank. The T1D PS was weakly associated with insulin use (OR 1.007, 95% CI 1.001-1.012, P = .03) in CHARGE T2D cases but not with other outcomes.ConclusionIn large biobank samples, a common variant PS for T1D was not consistently associated with prevalent T2D. However, possible heterogeneity in T2D cannot be ruled out and future studies are needed do subphenotyping

    Adjuvant and neoadjuvant therapy for gastric cancer using epirubicin/cisplatin/5-fluorouracil (ECF) and alternative regimens before and after chemoradiation

    Get PDF
    Chemoradiation is now used more commonly for gastric cancer following publication of the US Intergroup trial results that demonstrate an advantage to adjuvant postoperative chemoradiotherapy. However, there remain concerns regarding the toxicity of this treatment, the optimal chemotherapy regimen and the optimal method of radiotherapy delivery. In this prospective study, we evaluated the toxicity and feasibility of an alternative chemoradiation regimen to that used in the Intergroup trial. A total of 26 patients with adenocarcinoma of the stomach were treated with 3D-conformal radiation therapy to a dose of 45 Gy in 25 fractions with concurrent continuous infusional 5-fluorouracil (5-FU). The majority of patients received epirubicin, cisplatin and 5-FU (ECF) as the systemic component given before and after concurrent chemoradiation. The overall rates of observed grade 3 and 4 toxicities were 38 and 15%, respectively. GIT grade 3 toxicity was observed in 19% of patients, while haematologic grade 3 and 4 toxicities were observed in 23%. Our results suggest that this adjuvant regimen can be delivered safely and with acceptable toxicity. This regimen forms the basis of several new studies being developed for postoperative adjuvant therapy of gastric cancer

    Comparison of Newtonian and Special-Relativistic Trajectories with the General-Relativistic Trajectory for a Low-Speed Weak-Gravity System

    Get PDF
    We show, contrary to expectation, that the trajectory predicted by general-relativistic mechanics for a low-speed weak-gravity system is not always well-approximated by the trajectories predicted by special-relativistic and Newtonian mechanics for the same parameters and initial conditions. If the system is dissipative, the breakdown of agreement occurs for chaotic trajectories only. If the system is non-dissipative, the breakdown of agreement occurs for chaotic trajectories and non-chaotic trajectories. The agreement breaks down slowly for non-chaotic trajectories but rapidly for chaotic trajectories. When the predictions are different, general-relativistic mechanics must therefore be used, instead of special-relativistic mechanics (Newtonian mechanics), to correctly study the dynamics of a weak-gravity system (a low-speed weak-gravity system)

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate

    Get PDF
    This is the final version of the article. Available from American Geophysical Union via the DOI in this record.A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient data with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources.The data presented in the paper will be available through the Bolin Centre database (http://bolin.su.se/data/). The EC H2020 European Research Council ERC (ERC-StGATMOGAIN-278277 and ERC-StG-QAPPA-335478) and integrated project 641816 CRESCENDO Svenska Forskningsrådet Formas (Swedish Research Council Formas) (2015-749), Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation Wallenberg Fellowship AtmoRemove), Academy of Finland (grants 272041 and 259005), Natural Environment Research Council (NERC grants NE/M003531/1 and NE/J02175X/1), Norwegian Research Council (EVA grant 229771), Natural Sciences and Engineering Research Council of Canada (NSERC, grant RGPIN/04315-2014), National Science Foundation (NSF, grants ATM-1242258, AGS-1242932, and AGS-1360834), U.S. Environmental Protection Agency (EPA, STAR grant R835410), National Oceanic and Atmospheric Administration (NOAA, CPO award 538NA10OAR4310102), Electric Power Research Institute (EPRI, grant 10004734), U.S. Department of Energy (DOE, grants BER/ASR DE-SC0016559 and DE-SC0012792), Georgia Institute of Technology, and NordForsk (Nordic Centre of Excellence eSTICC) are gratefully acknowledged for funding. The climate model simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the National Supercomputing Centre. Benjamin Murphy is acknowledged for useful discussions

    Computer-assisted versus non-computer-assisted preoperative planning of corrective osteotomy for extra-articular distal radius malunions: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malunion is the most common complication of distal radius fracture. It has previously been demonstrated that there is a correlation between the quality of anatomical correction and overall wrist function. However, surgical correction can be difficult because of the often complex anatomy associated with this condition. Computer assisted surgical planning, combined with patient-specific surgical guides, has the potential to improve pre-operative understanding of patient anatomy as well as intra-operative accuracy. For patients with malunion of the distal radius fracture, this technology could significantly improve clinical outcomes that largely depend on the quality of restoration of normal anatomy. Therefore, the objective of this study is to compare patient outcomes after corrective osteotomy for distal radius malunion with and without preoperative computer-assisted planning and peri-operative patient-specific surgical guides.</p> <p>Methods/Design</p> <p>This study is a multi-center randomized controlled trial of conventional planning versus computer-assisted planning for surgical correction of distal radius malunion. Adult patients with extra-articular malunion of the distal radius will be invited to enroll in our study. After providing informed consent, subjects will be randomized to two groups: one group will receive corrective surgery with conventional preoperative planning, while the other will receive corrective surgery with computer-assisted pre-operative planning and peri-operative patient specific surgical guides. In the computer-assisted planning group, a CT scan of the affected forearm as well as the normal, contralateral forearm will be obtained. The images will be used to construct a 3D anatomical model of the defect and patient-specific surgical guides will be manufactured. Outcome will be measured by DASH and PRWE scores, grip strength, radiographic measurements, and patient satisfaction at 3, 6, and 12 months postoperatively.</p> <p>Discussion</p> <p>Computer-assisted surgical planning, combined with patient-specific surgical guides, is a powerful new technology that has the potential to improve the accuracy and consistency of orthopaedic surgery. To date, the role of this technology in upper extremity surgery has not been adequately investigated, and it is unclear whether its use provides any significant clinical benefit over traditional preoperative imaging protocols. Our study will represent the first randomized controlled trial investigating the use of computer assisted surgery in corrective osteotomy for distal radius malunions.</p> <p>Trial registration</p> <p>NCT01193010</p

    Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture.</p> <p>Methods</p> <p>Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale <it>in silico </it>image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM).</p> <p>Results</p> <p>We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates.</p> <p>Conclusion</p> <p>The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes.</p
    corecore