474 research outputs found

    The Anthropocene is best understood as an ongoing, intensifying, diachronous event

    Get PDF
    Current debate on the status and character of the Anthropocene is focussed on whether this interval of geological time should be designated as a formal unit of epoch/series rank in the International Chronostratigraphic Chart/Geological Time Scale, or whether it is more appropriate for it to be considered as an informal ‘event’ comparable in significance with other major transformative events in deeper geological time. The case for formalizing the Anthropocene as a chronostratigraphical unit with a base at approximately 1950 CE is being developed by the Anthropocene Working Group of the Subcommission on Quaternary Stratigraphy. Here we outline the alternative position and explain why the time-transgressive nature of human impact on global environmental systems that is reflected in the recent stratigraphical record means that the Anthropocene is better seen not as a series/epoch with a fixed lower boundary, but rather as an unfolding, transforming and intensifying geological event

    A practical solution: the Anthropocene is a geological event, not a formal epoch

    Get PDF
    The Anthropocene has yet to be defined in a way that is functional both to the international geological community and to the broader fields of environmental and social sciences. Formally defining the Anthropocene as a chronostratigraphical series and geochronological epoch with a precise global start date would drastically reduce the Anthropocene’s utility across disciplines. Instead, we propose the Anthropocene be defined as a geological event, thereby facilitating a robust geological definition linked with a scholarly framework more useful to and congruent with the many disciplines engaging with human-environment interactions. Unlike formal epochal definitions, geological events can recognize the spatial and temporal heterogeneity and diverse social and environmental processes that interact to produce anthropogenic global environmental changes. Consequently, an Anthropocene Event would incorporate a far broader range of transformative human cultural practices and would be more readily applicable across academic fields than an Anthropocene Epoch, while still enabling a robust stratigraphic characterization

    Impact of organised programs on colorectal cancer screening

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Colorectal cancer (CRC) screening has been shown to decrease CRC mortality. Organised mass screening programs are being implemented in France. Its perception in the general population and by general practitioners is not well known.</p> <p>Methods</p> <p>Two nationwide observational telephone surveys were conducted in early 2005. First among a representative sample of subjects living in France and aged between 50 and 74 years that covered both geographical departments with and without implemented screening services. Second among General Practionners (Gps). Descriptive and multiple logistic regression was carried out.</p> <p>Results</p> <p>Twenty-five percent of the persons(N = 1509) reported having undergone at least one CRC screening, 18% of the 600 interviewed GPs reported recommending a screening test for CRC systematically to their patients aged 50–74 years. The odds ratio (OR) of having undergone a screening test using FOBT was 3.91 (95% CI: 2.49–6.16) for those living in organised departments (referent group living in departments without organised screening), almost twice as high as impact educational level (OR = 2.03; 95% CI: 1.19–3.47).</p> <p>Conclusion</p> <p>CRC screening is improved in geographical departments where it is organised by health authorities. In France, an organised screening programs decrease inequalities for CRC screening.</p

    Modeling Effective Dosages in Hormetic Dose-Response Studies

    Get PDF
    BACKGROUND: Two hormetic modifications of a monotonically decreasing log-logistic dose-response function are most often used to model stimulatory effects of low dosages of a toxicant in plant biology. As just one of these empirical models is yet properly parameterized to allow inference about quantities of interest, this study contributes the parameterized functions for the second hormetic model and compares the estimates of effective dosages between both models based on 23 hormetic data sets. Based on this, the impact on effective dosage estimations was evaluated, especially in case of a substantially inferior fit by one of the two models. METHODOLOGY/PRINCIPAL FINDINGS: The data sets evaluated described the hormetic responses of four different test plant species exposed to 15 different chemical stressors in two different experimental dose-response test designs. Out of the 23 data sets, one could not be described by any of the two models, 14 could be better described by one of the two models, and eight could be equally described by both models. In cases of misspecification by any of the two models, the differences between effective dosages estimates (0-1768%) greatly exceeded the differences observed when both models provided a satisfactory fit (0-26%). This suggests that the conclusions drawn depending on the model used may diverge considerably when using an improper hormetic model especially regarding effective dosages quantifying hormesis. CONCLUSIONS/SIGNIFICANCE: The study showed that hormetic dose responses can take on many shapes and that this diversity can not be captured by a single model without risking considerable misinterpretation. However, the two empirical models considered in this paper together provide a powerful means to model, prove, and now also to quantify a wide range of hormetic responses by reparameterization. Despite this, they should not be applied uncritically, but after statistical and graphical assessment of their adequacy

    In-cell NMR in E. coli to Monitor Maturation Steps of hSOD1

    Get PDF
    In-cell NMR allows characterizing the folding state of a protein as well as posttranslational events at molecular level, in the cellular context. Here, the initial maturation steps of human copper, zinc superoxide dismutase 1 are characterized in the E. coli cytoplasm by in-cell NMR: from the apo protein, which is partially unfolded, to the zinc binding which causes its final quaternary structure. The protein selectively binds only one zinc ion, whereas in vitro also the copper site binds a non-physiological zinc ion. However, no intramolecular disulfide bridge formation occurs, nor copper uptake, suggesting the need of a specific chaperone for those purposes

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.

    Improved Resolution of Reef-Coral Endosymbiont (Symbiodinium) Species Diversity, Ecology, and Evolution through psbA Non-Coding Region Genotyping

    Get PDF
    Ribosomal DNA sequence data abounds from numerous studies on the dinoflagellate endosymbionts of corals, and yet the multi-copy nature and intragenomic variability of rRNA genes and spacers confound interpretations of symbiont diversity and ecology. Making consistent sense of extensive sequence variation in a meaningful ecological and evolutionary context would benefit from the application of additional genetic markers. Sequences of the non-coding region of the plastid psbA minicircle (psbAncr) were used to independently examine symbiont genotypic and species diversity found within and between colonies of Hawaiian reef corals in the genus Montipora. A single psbAncr haplotype was recovered in most samples through direct sequencing (∼80–90%) and members of the same internal transcribed spacer region 2 (ITS2) type were phylogenetically differentiated from other ITS2 types by substantial psbAncr sequence divergence. The repeated sequencing of bacterially-cloned fragments of psbAncr from samples and clonal cultures often recovered a single numerically common haplotype accompanied by rare, highly-similar, sequence variants. When sequence artifacts of cloning and intragenomic variation are factored out, these data indicate that most colonies harbored one dominant Symbiodinium genotype. The cloning and sequencing of ITS2 DNA amplified from these same samples recovered numerically abundant variants (that are diagnostic of distinct Symbiodinium lineages), but also generated a large amount of sequences comprising PCR/cloning artifacts combined with ancestral and/or rare variants that, if incorporated into phylogenetic reconstructions, confound how small sequence differences are interpreted. Finally, psbAncr sequence data from a broad sampling of Symbiodinium diversity obtained from various corals throughout the Indo-Pacific were concordant with ITS lineage membership (defined by denaturing gradient gel electrophoresis screening), yet exhibited substantially greater sequence divergence and revealed strong phylogeographic structure corresponding to major biogeographic provinces. The detailed genetic resolution provided by psbAncr data brings further clarity to the ecology, evolution, and systematics of symbiotic dinoflagellates

    Probabilistic fire spread forecast as a management tool in an operational setting

    Get PDF
    Background: An approach to predict fire growth in an operational setting, with the potential to be used as a decision-support tool for fire management, is described and evaluated. The operational use of fire behaviour models has mostly followed a deterministic approach, however, the uncertainty associated with model predictions needs to be quantified and included in wildfire planning and decision-making process during fire suppression activities. We use FARSITE to simulate the growth of a large wildfire. Probabilistic simulations of fire spread are performed, accounting for the uncertainty of some model inputs and parameters. Deterministic simulations were performed for comparison. We also assess the degree to which fire spread modelling and satellite active fire data can be combined, to forecast fire spread during large wildfires events. Results: Uncertainty was propagated through the FARSITE fire spread modelling system by randomly defining 100 different combinations of the independent input variables and parameters, and running the correspondent fire spread simulations in order to produce fire spread probability maps. Simulations were initialized with the reported ignition location and with satellite active fires. The probabilistic fire spread predictions show great potential to be used as a fire management tool in an operational setting, providing valuable information regarding the spatial–temporal distribution of burn probabilities. The advantage of probabilistic over deterministic simulations is clear when both are compared. Re-initializing simulations with satellite active fires did not improve simulations as expected. Conclusion: This information can be useful to anticipate the growth of wildfires through the landscape with an associated probability of occurrence. The additional information regarding when, where and with what probability the fire might be in the next few hours can ultimately help minimize the negative environmental, social and economic impacts of these firesinfo:eu-repo/semantics/publishedVersio
    corecore