55 research outputs found

    A cost-effectiveness analysis of a preventive exercise program for patients with advanced head and neck cancer treated with concomitant chemo-radiotherapy

    Get PDF
    In recent years, concomitant chemo-radiotherapy (CCRT) has become an indispensable organ preserving treatment modality for advanced head and neck cancer, improving local control and overall survival in several anatomical sites [1]. Unfortunately, CCRT can have a detrimental effect on many functions of the upper respiratory and digestive system. Sequellae such as pain, oedema, xerostomia and fibrosis negatively affect mouth opening (trismus), chewing, swallowing and speech [1]. Several studies investigating long-term effects of CCRT have concluded that swallowing and nutritional dysfunction tend to be persistent and can be severe [2-4]. Not surprisingly, therefore, CCRT can have a negative effect on patients‟ quality of life (QoL) [2]. Moreover, even before onset of treatment patients may already present with pain, impaired swallowing, trismus, aspiration, dietary restrictions and tube dependency, and loss of body weight, because the tumour may disrupt the normal anatomy and thus interfere with normal function [1]. Many studies refer to the importance of rehabilitation after, and even during treatment, in order to support and improve those functions [2]. However, as yet, few studies have investigated the effects of (preventive) rehabilitation exercises on the predictable and inevitable swallowing and mouth opening problems for this patient group. In addition, little is known about the costs and benefits of such exercise programs for head and neck cancer. As the clinical effectiveness is established [4], it is now relevant to embark on cost-effectiveness as a contribution to decision making on coverage. The aim of this study was to analyze the incremental cost-effectiveness for a preventive exercise program (PREP) versus usual care (UC) for patients with advanced head and neck cancer treated at the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL)

    Compressive properties of min-mod-type limiters in modelling shockwave-containing flows

    Get PDF
    The long-ignored compressive properties of Min-mod-type limiter is investigated in this manuscript by demonstrating its potential in numerically modelling shockwave-containing flows, especially in shock wave/boundary layer interaction (SWBLI) problems. Theoretical studies were firstly performed based on Sweby’s total variation diminishing (TVD) limiter region and Spekreijse’s monotonicity-preserving limiter region to indicate Min-mod-type limiters’ compressive properties. The influence of limiters on the solution accuracy was evaluated using a hybrid-order analysis method based on the grid-independent study in three typical shockwave-containing flows. The conclusions are that, Min-mod-type limiter can be utilized as a dissipative and/or compressive limiter, but depending on the reasonable value of the compression parameter. The compressive Min-mod limiter tends to be more attractive in modelling shockwave-containing flows as compared to other commonly preferred limiters because of its stable computational process and its high-resolution predictions. However, the compressive Min-mod limiter may suffer from its slightly poor convergence, as that observed in other commonly accepted smooth limiters in modelling SWBLI problems. © 2020, The Author(s)

    A review on the relation between simulation and improvement in hospitals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simulation applications on operations management in hospitals are frequently published and claim to support decision-making on operations management subjects. However, the reported implementation rates of recommendations are low and the actual impact of the changes recommended by the modeler has hardly been examined. This paper examines: 1) the execution rate of simulation study recommendations, 2) the research methods used to evaluate implementation of recommendations, 3) factors contributing to implementation, and 4) the differences regarding implementation between literature and practice.</p> <p>Results</p> <p>Altogether 16 hospitals executed the recommendations (at least partially). Implementation results were hardly reported upon; 1 study described a before-and-after design, 2 a partial before and after design. Factors that help implementation were grouped according to 1) technical quality, of which data availability, validation/verification with historic data/expert opinion, and the development of the conceptual model were mentioned most frequently 2) process quality, with client involvement and 3) outcome quality with, presentation of results. The survey response rate of traceable authors was 61%, 18 authors implemented the results at least partially. Among these responses, evaluation methods were relatively better with 3 time series designs and 2 before-and-after designs.</p> <p>Conclusions</p> <p>Although underreported in literature, implementation of recommendations seems limited; this review provides recommendations on project design, implementation conditions and evaluation methods to increase implementation.</p> <p>Methods</p> <p>A literature review in PubMed and Business Source Elite on stochastic simulation applications on operations management in individual hospitals published between 1997 and 2008. From those reporting implementation, cross references were added. In total, 89 papers were included. A scoring list was used for data extraction. Two reviewers evaluated each paper separately; in case of discrepancies, they jointly determined the scores. The findings were validated with a survey to the original authors.</p

    Neuroleptic-induced movement disorders in a naturalistic schizophrenia population: diagnostic value of actometric movement patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroleptic-induced movement disorders (NIMDs) have overlapping co-morbidity. Earlier studies have described typical clinical movement patterns for individual NIMDs. This study aimed to identify specific movement patterns for each individual NIMD using actometry.</p> <p>Methods</p> <p>A naturalistic population of 99 schizophrenia inpatients using conventional antipsychotics and clozapine was evaluated. Subjects with NIMDs were categorized using the criteria for NIMD found in the Diagnostic and Statistical Manual for Mental Disorders – Fourth Edition (DSM-IV).</p> <p>Two blinded raters evaluated the actometric-controlled rest activity data for activity periods, rhythmical activity, frequencies, and highest acceleration peaks. A simple subjective question was formulated to test patient-based evaluation of NIMD.</p> <p>Results</p> <p>The patterns of neuroleptic-induced akathisia (NIA) and pseudoakathisia (PsA) were identifiable in actometry with excellent inter-rater reliability. The answers to the subjective question about troubles with movements distinguished NIA patients from other patients rather well. Also actometry had rather good screening performances in distinguishing akathisia from other NIMD. Actometry was not able to reliably detect patterns of neuroleptic-induced parkinsonism and tardive dyskinesia.</p> <p>Conclusion</p> <p>The present study showed that pooled NIA and PsA patients had a different pattern in lower limb descriptive actometry than other patients in a non-selected sample. Careful questioning of patients is a useful method of diagnosing NIA in a clinical setting.</p

    Emerging Use of Early Health Technology Assessment in Medical Product Development: A Scoping Review of the Literature

    Get PDF
    Early health technology assessment is increasingly being used to support health economic evidence development during early stages of clinical research. Such early models can be used to inform research and development about the design and management of new medical technologies to mitigate the risks, perceived by industry and the public sector, associated with market access and reimbursement. Over the past 25 years it has been suggested that health economic evaluation in the early stages may benefit the development and diffusion of medical products. Early health technology assessment has been suggested in the context of iterative economic evaluation alongside phase I and II clinical research to inform clinical trial design, market access, and pricing. In addition, performing early health technology assessment was also proposed at an even earlier stage for managing technology portfolios. This scoping review suggests a generally accepted definition of early health technology assessment to be “all methods used to inform industry and other stakeholders about the potential value of new medical products in development, including methods to quantify and manage uncertainty”. The present review also aimed to identify recent published empirical studies employing an early-stage assessment of a medical product. With most included studies carried out to support a market launch, the dominant methodology was early health economic modeling. Further methodological development is required, in particular, by combining systems engineering and health economics to manage uncertainty in medical product portfolios

    The European Solar Telescope

    Get PDF
    The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l’Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems

    The black hole accretion code

    Get PDF

    Finite Volume Solution of 2D and 3D Euler and Navier-Stokes Equations

    No full text
    This contribution deals with the modern finite volume schemes solving the Euler and Navier-Stokes equations for transonic flow problems. We will mention the TVD theory for first order and higher order schemes and some numerical examples obtained by 2D central and upwind schemes for 2D transonic flows in the GAMM channel or through the SE 1050 turbine cascade of Skoda Plzen. In the next part two new 2D finite volume schemes are presented. Explicit composite scheme on a structured triangular mesh and implicit scheme realized on a general unstructured mesh. Both schemes are used for the solution of inviscid transonic flows in the GAMM channel and the implicit scheme also for the flows through the SE 1050 turbine cascade using both triangular and quadrilateral meshes. For the case of the flows through the SE 1050 turbine we compare the numerical results with the experiment. The TVD MacCormack method as well as a finite volume composite scheme are extended to a 3D method for solving flows through channels and turbine cascades. 1. Mathematical model We consider the system of 2D Navier-Stokes equations for compressible medium in conservative form: W t + F x +G y = R x + S y , W = [#, #u, #v, e], p = (# #(u F = [#u, #u + p, #uv, (e + p)u], G = [#v, #uv, #v + p, (e + p)v], R = [0, # 11 , # 12 , u# 11 + v# 12 + kT x ], S = [0, # 21 , # 22 , u# 21 + v# 22 + kT y ], (1) where # is the density, (u, v) the velocity vector, e the total energy per unit volume, the viscosity coe#cient, k is the heat conductivity, p is the pressure, # is the adiabatic coe#cient, and the components of the stress tensor # are # 11 = u x , # 21 = # 12 = (u y + v x ) , # 22 = u x + 4 . (2) The 2D Euler equations are obtained from the Navier-Stokes equations by..
    corecore