124 research outputs found

    Climate forcing of an emerging pathogenic fungus across a montane multi-host community

    Get PDF
    Changes in the timings of seasonality as a result of anthropogenic climate change are predicted to occur over the coming decades. While this is expected to have widespread impacts on the dynamics of infectious disease through environmental forcing, empirical data are lacking. Here, we investigated whether seasonality, specifically the timing of spring ice-thaw, affected susceptibility to infection by the emerging pathogenic fungus Batrachochytrium dendrobatidis (Bd) across a montane community of amphibians that are suffering declines and extirpations as a consequence of this infection. We found a robust temporal association between the timing of the spring thaw and Bd infection in two host species, where we show that an early onset of spring forced high prevalences of infection. A third highly susceptible species (the midwife toad, Alytes obstetricans) maintained a high prevalence of infection independent of time of spring thaw. Our data show that perennially overwintering midwife toad larvae may act as a year-round reservoir of infection with variation in time of spring thaw determining the extent to which infection spills over into sympatric species. We used future temperature projections based on global climate models to demonstrate that the timing of spring thaw in this region will advance markedly by the 2050s, indicating that climate change will further force the severity of infection. Our findings on the effect of annual variability on multi-host infection dynamics show that the community-level impact of fungal infectious disease on biodiversity will need to be re-evaluated in the face of climate change

    Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state

    Get PDF
    Background In this study, we evaluated electrooculography (EOG), an eye tracker and an auditory brain-computer interface (BCI) as access methods to augmentative and alternative communication (AAC). The participant of the study has been in the locked-in state (LIS) for 6 years due to amyotrophic lateral sclerosis. He was able to communicate with slow residual eye movements, but had no means of partner independent communication. We discuss the usability of all tested access methods and the prospects of using BCIs as an assistive technology. Methods Within four days, we tested whether EOG, eye tracking and a BCI would allow the participant in LIS to make simple selections. We optimized the parameters in an iterative procedure for all systems. Results The participant was able to gain control over all three systems. Nonetheless, due to the level of proficiency previously achieved with his low-tech AAC method, he did not consider using any of the tested systems as an additional communication channel. However, he would consider using the BCI once control over his eye muscles would no longer be possible. He rated the ease of use of the BCI as the highest among the tested systems, because no precise eye movements were required; but also as the most tiring, due to the high level of attention needed to operate the BCI. Conclusions In this case study, the partner based communication was possible due to the good care provided and the proficiency achieved by the interlocutors. To ease the transition from a low-tech AAC method to a BCI once control over all muscles is lost, it must be simple to operate. For persons, who rely on AAC and are affected by a progressive neuromuscular disease, we argue that a complementary approach, combining BCIs and standard assistive technology, can prove valuable to achieve partner independent communication and ease the transition to a purely BCI based approach. Finally, we provide further evidence for the importance of a user-centered approach in the design of new assistive devices

    Using Relational Verification for Program Slicing

    Get PDF
    Program slicing is the process of removing statements from a program such that defined aspects of its behavior are retained. For producing precise slices, i.e., slices that are minimal in size, the program\u27s semantics must be considered. Existing approaches that go beyond a syntactical analysis and do take the semantics into account are not fully automatic and require auxiliary specifications from the user. In this paper, we adapt relational verification to check whether a slice candidate obtained by removing some instructions from a program is indeed a valid slice. Based on this, we propose a framework for precise and automatic program slicing. As part of this framework, we present three strategies for the generation of slice candidates, and we show how dynamic slicing approaches - that interweave generating and checking slice candidates - can be used for this purpose. The framework can easily be extended with other strategies for generating slice candidates. We discuss the strengths and weaknesses of slicing approaches that use our framework

    Identification of a Classical Bipartite Nuclear Localization Signal in the Drosophila TEA/ATTS Protein Scalloped

    Get PDF
    Drosophila melanogaster wing development has been shown to rely on the activity of a complex of two proteins, Scalloped (Sd) and Vestigial (Vg). Within this complex, Sd is known to provide DNA binding though its TEA/ATTS domain, while Vg modulates this binding and provides transcriptional activation through N- and C-terminal activation domains. There is also evidence that Sd is required for the nuclear translocation of Vg. Indeed, a candidate sequence which shows consensus to the bipartite family of nuclear localization signals (NLSs) has been identified within Sd previously, though it is not known if it is functional, or if additional unpredicted signals that mediate nuclear transport exist within the protein. By expressing various enhanced green fluorescent protein (eGFP) tagged constructs within Drosophila S2 cells, we demonstrate that this NLS is indeed functional and necessary for the proper nuclear localization of Sd. Additionally, the region containing the NLS is critical for the wildtype function of ectopically expressed Sd, in the context of wing development. Using site-directed mutagenesis, we have identified a group of five amino acids within this NLS which is critical for its function, as well as another group of two which is of lesser importance. Together with data that suggests that this sequence mediates interactions with Importin-α3, we conclude that the identified NLS is likely a classical bipartite signal. Further dissection of Sd has also revealed that a large portion of the C-terminal domain of the protein is required its proper nuclear localization. Finally, a Leptomycin B (LB) sensitive signal which appears to facilitate nuclear export is identified, raising the possibility that Sd also contains a nuclear export signal (NES)

    3066 consecutive Gamma Nails. 12 years experience at a single centre

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fixation of trochanteric hip fractures using the Gamma Nail has been performed since 1988 and is today well established and wide-spread. However, a number of reports have raised serious concerns about the implant's complication rate. The main focus has been the increased risk of a subsequent femoral shaft fracture and some authors have argued against its use despite other obvious advantages, when this implant is employed.</p> <p>Through access to a uniquely large patient data base available, which is available for analysis of trochanteric fractures; we have been able to evaluate the performance of the Gamma Nail over a twelve year period.</p> <p>Methods</p> <p>3066 consecutive patients were treated for trochanteric fractures using Gamma Nails between 1990 and 2002 at the Centre de Traumatologie et de l'Orthopedie (CTO), Strasbourg, France. These patients were retrospectively analysed. Information on epidemiological data, intra- and postoperative complications and patients' outcome was retrieved from patient notes. All available radiographs were assessed by a single reviewer (AJB).</p> <p>Results</p> <p>The results showed a low complication rate with the use of the Gamma Nail. There were 137 (4.5%) intraoperative fracture-related complications. Moreover 189 (6.2%) complications were detected postoperatively and during follow-up. Cut-out of the lag screw from the femoral head was the most frequent mechanical complication (57 patients, 1.85%), whereas a postoperative femoral shaft fracture occurred in 19 patients (0.6%). Other complications, such as infection, delayed healing/non-union, avascular femoral head necrosis and distal locking problems occurred in 113 patients (3.7%).</p> <p>Conclusions</p> <p>The use of the Gamma Nail in trochanteric hip fractures is a safe method with a low complication rate. In particular, a low rate of femoral shaft fractures was reported. The low complication rate reported in this series can probably be explained by strict adherence to a proper surgical technique.</p

    NO Dioxygenase Activity in Hemoglobins Is Ubiquitous In Vitro, but Limited by Reduction In Vivo

    Get PDF
    Genomics has produced hundreds of new hemoglobin sequences with examples in nearly every living organism. Structural and biochemical characterizations of many recombinant proteins reveal reactions, like oxygen binding and NO dioxygenation, that appear general to the hemoglobin superfamily regardless of whether they are related to physiological function. Despite considerable attention to “hexacoordinate” hemoglobins, which are found in nearly every plant and animal, no clear physiological role(s) has been assigned to them in any species. One popular and relevant hypothesis for their function is protection against NO. Here we have tested a comprehensive representation of hexacoordinate hemoglobins from plants (rice hemoglobin), animals (neuroglobin and cytoglobin), and bacteria (Synechocystis hemoglobin) for their abilities to scavenge NO compared to myoglobin. Our experiments include in vitro comparisons of NO dioxygenation, ferric NO binding, NO-induced reduction, NO scavenging with an artificial reduction system, and the ability to substitute for a known NO scavenger (flavohemoglobin) in E. coli. We conclude that none of these tests reveal any distinguishing predisposition toward a role in NO scavenging for the hxHbs, but that any hemoglobin could likely serve this role in the presence of a mechanism for heme iron re-reduction. Hence, future research to test the role of Hbs in NO scavenging would benefit more from the identification of cognate reductases than from in vitro analysis of NO and O2 binding

    Plant growth promoting rhizobia: challenges and opportunities

    Get PDF

    Homeodomain proteins: an update

    Get PDF
    corecore