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Using Relational Verification for Program Slicing

Bernhard Beckert, Thorsten Bormer, Stephan Gocht,
Mihai Herda, Daniel Lentzsch, and Mattias Ulbrich

Karlsruhe Institute of Technology, KTH Royal Institute of Technology

Abstract. Program slicing is the process of removing statements from
a program such that defined aspects of its behavior are retained. For pro-
ducing precise slices, i.e., slices that are minimal in size, the program’s
semantics must be considered. Existing approaches that go beyond a
syntactical analysis and do take the semantics into account are not fully
automatic and require auxiliary specifications from the user. In this pa-
per, we adapt relational verification to check whether a slice candidate
obtained by removing some instructions from a program is indeed a valid
slice. Based on this, we propose a framework for precise and automatic
program slicing. As part of this framework, we present three strategies
for the generation of slice candidates, and we show how dynamic slicing
approaches – that interweave generating and checking slice candidates –
can be used for this purpose. The framework can easily be extended with
other strategies for generating slice candidates. We discuss the strengths
and weaknesses of slicing approaches that use our framework.

Keywords: program slicing, relational verification

1 Introduction

Program slicing, introduced by Weiser [34], is a technique to reduce the size of
a program while preserving a certain part of its behavior. Different kinds of slic-
ing approaches have been developed [26]. A static slice preserves the program’s
behavior for all inputs, while a dynamic slice preserves it only for a particular
single input. A backward slice keeps only those parts of the program that influ-
ence the value of certain variables at a certain location in the program, while
a forward slice keeps those program parts whose behavior is influenced by the
variables’ values. The form of slicing introduced by Weiser is now known as static
backward slicing and is the form of slicing which is pursued in this paper. Slicing
techniques can be used to optimize the results of compilers. Slicing is also a
powerful tool for challenges in software engineering such as code comprehension,
debugging, refactoring, and fault localization [6], as well as in information-flow
security [16].

All applications of slicing benefit from small and precise slices. Most exist-
ing slicing approaches, however, are only syntactical, i.e., they do not take the
semantics of the various program operations into account. On the other hand,
the existing approaches that do take the semantics into account are not fully



1 int f(int h, int N){

2 int i = 0;

3 int x = 0;

4 while(i < N) {

5 if(i < N - 1)

6 x = h;

7 else
8 x = 42;

9 i++;

10 }

11 return x;

12 }

1 int f(int h, int N){

2 int i = 0;

3 int x = 0;

4 while(i < N) {

5 if(i < N - 1)

6 skip;
7 else
8 x = 42;

9 i++;

10 }

11 return x;

12 }

1 int f(int h, int N){

2 int i = 0;

3 int x = 0;

4 while(i < N) {

5 if(i < N - 1)

6 skip;
7 else
8 skip;
9 i++;

10 }

11 return x;

12 }

Fig. 1: (a) Original program, (b) slice w.r.t. variable x at line 11, (c) incorrect
slice candidate

automatic and require auxiliary specifications from the user (e.g., precomputed
or user-provided functional loop invariants are used in [4,19]).

Figure 1 shows an example of static backward slicing. The goal is to slice
the program in Fig. 1a w.r.t. a slicing criterion which requires the value of x
at the statement in line 11 to be preserved. A valid slice for this criterion is
shown in Fig. 1b: The assignment in line 6 of the program has been removed.
This line has no effect on the value of x, as it is always set to 42 in the last loop
iteration. In fact, the statement is not completely removed but replaced with an
effect free skip statement to keep the program’s structure similar to that of the
input program. To show that this program is a valid slice, a syntactical analysis
is insufficient, as it would not be able to see that in the last iteration variable
x is overwritten. A semantic analysis is required to determine that the last loop
iteration always executes the else-branch. The slicing procedure needs to reason
about loops and path conditions, and in this paper we use relational verification
for this purpose.

Relational verification approaches that consider the program’s semantics and
automatically reason about loops have become available in the last couple of
years, e.g. [21,11,32]. These approaches can efficiently and automatically show
the equivalence of two programs – provided that the two programs have a similar
structure. Since slices are constructed by removing program statements, they
have a similar structure to the original program and are a good use case for
relational verification. In this paper we make the following contributions:

1. We provide an extensible framework for precise and automatic slicing of
programs written in a low level intermediate representation language. The
slicing approaches using this framework need no (auxiliary) specification
other than the slicing criterion.

2. We adapt a relational verifier to check if a slice candidate obtained by re-
moving instructions from a program is a valid slice.

3. We adapt a dynamic slicing algorithm and use it to generate slice candidates.

The feasibility of our framework has been shown in a tool paper [5] describing an
implementation. Here, we focus on the theoretical background of the framework.



Structure of the paper. In Section 2, we formally describe the programs which
we handle and define what a valid slice is. We introduce relational verification in
Section 3 and extend it to prove the validity of a slice candidate. The framework
itself, as well as three slicing approaches based on this framework are described
in Section 4. Section 5 consists of a discussion of the framework. We present
related work in Section 6 and conclude in Section 7.

2 Static Backward Slicing

Static backward slicing as introduced by Weiser [34] reduces a program by re-
moving instructions in a way that preserves a specified subset of the program’s
behavior. The slicing criterion – the specification of the behavioral aspects that
must be retained – is given in form of a set of program variables and a location
within the program. Instructions may be removed if and only if they have no
effect (a) on the value of the specified program variables at the specified location
whenever it is reached and (b) on how often the location is reached.

High level programming languages are feature rich, increasing the effort
needed for a program analysis. A solution for dealing with language complexity
is to perform the analysis on a simpler, intermediate representation. While the
implementation of our slicing framework [5] works on LLVM IR [1] programs,
to keep the definitions in this paper easy to understand, we here use a language
whose computational model is similar to that of LLVM IR but that has only
four instructions: skip, halt , assign, and jnz . We formalize the notions of slice
candidate, slicing criterion and valid slice using a computation model based on
a register machine with an unbounded number of registers. Thus we do not have
high-level constructs such as if or while statements but instead branching and
looping are done using conditional jump instructions. The advantage of using
such a language is the fact that the control flow is reduced to jumps, and, in
the context of slicing, a program remains executable no matter what statements
are removed. Figure 2 shows the examples from Fig. 1 written in our simple IR
language. The criterion location is now 12, the criterion variable is still x.

0 assign i 0

1 assign x 0

2 assign c1 (i >= N)

3 jnz c1 12

4 assign t1 (N - 1)

5 assign c2 (i >= t1)

6 jnz c2 9

7 assign x h

8 jnz 1 10

9 assign x 42

10 assign i (i + 1)

11 jnz 1 2

12 halt

0 assign i 0

1 assign x 0

2 assign c1 (i >= N)

3 jnz c1 12

4 assign t1 (N - 1)

5 assign c2 (i >= t1)

6 jnz c2 9

7 skip
8 jnz 1 10

9 assign x 42

10 assign i (i + 1)

11 jnz 1 2

12 halt

0 assign i 0

1 assign x 0

2 assign c1 (i >= N)

3 jnz c1 12

4 assign t1 (N - 1)

5 assign c2 (i >= t1)

6 jnz c2 9

7 skip
8 jnz 1 10

9 skip
10 assign i (i + 1)

11 jnz 1 2

12 halt

Fig. 2: The three examples from Fig. 1 translated into our IR language.



P [pc] = skip

(s, pc) (s, pc + 1)

pc > len(P )

(s, pc) (end , pc)

P [pc] = jnz v target s(v) = 0

(s, pc) (s, pc + 1)

P [pc] = jnz v target s(v) 6= 0

(s, pc) (s, target)

P [pc] = halt

(s, pc) (end , pc)

(end , pc) (end , pc)

P [pc] = assign v exp x = s(exp)

(s, pc) (s[v\x], pc + 1)

Fig. 3: The semantics of our programming language for a fixed program P

We will now define the semantics of our IR language. Let Var be the set of
program variables, S the set of states, where a state is a function s : Var → N,
and pc ∈ N the program counter. An instruction I is an atomic operation that
can be executed by the machine. Let I be the set of all four instructions provided
by our IR language. When an instruction is executed, the system changes its state
and program counter as determined by the transition function ρ : S × N× I →
S×N. A program P is a finite sequence of instructions: 〈I0, I1, . . . In〉. We denote
a location i of program P as P [i] with P [i] = Ii for any i ∈ {0, 1, . . . n} with
0 ≤ i ≤ len(P )− 1, where len(P ) is the length of the program.

The semantics of the four instructions in our IR language is shown in Fig. 3.
The instruction skip increments the program counter and has no other effects.
To obtain a slice candidate, instructions in the original program are replaced
with skip. To model the termination of programs we introduce a special state,
end , such that once the system reaches this state, it will remain in this state
forever. The instruction halt is used to bring the system to the end state. The
assignment instruction, assign, takes a variable v and an integer expression exp
as arguments. After the execution of this instruction, the value of the variable
v in the new state is updated with the result x of the expression exp and the
program counter is incremented. To obtain precise slices, we restrict exp to only
one operator. The conditional jump instruction, jnz , allows the register machine
to support branching and looping. The instruction gets a variable v and an
integer expression target as arguments. If the variable v evaluates to zero in
the state in which jnz is executed, then the program counter is incremented,
otherwise the program counter is set to the value of target . We will now define
program traces:

Definition 1 (Program trace). A trace T of a program P is a possibly infinite
sequence of state and program counter pairs 〈(s0, pc0), (s1, pc1), . . .〉 such that:

1. pc0 = 0
2. For each trace index i but the last, (si, pci) (si+1, pci+1)



We use T s[i] and T pc [i] to denote respectively the ith state and the ith
program counter of a trace. Also we use len(T ) ∈ N ∪ {ω} to denote the length
of trace T ; note that it can be infinite. We define F l

T to be the sequence comprised
of those states T s[i] for which T pc [i] = l, in the same order as they appear in T s.
We define the notions of a slicing criterion, slice candidate and valid slice:

Definition 2 (Slicing Criterion). A slicing criterion C for a program P is a
pair (iC ,VarC) where iC is a location in P and VarC ⊆ Var.

Definition 3 (Slice Candidate). A slice candidate for a program Po is a pro-
gram PL that is constructed by replacing the instructions at some locations in
Po with the skip instruction. That is, given a set L of locations of program Po:

PL[i] =

{
skip, i ∈ L
Po[i], i /∈ L

Definition 4 (Valid Slice). Given a slicing criterion (iC ,VarC), a slice can-
didate Ps for a program Po is a valid slice for Po if, for any two traces Ts of Ps

and To of Po with Ts[0] = To[0], the following holds:

1. len(F iC
To

) = len(F iC
Ts

),

2. F iC
To

[i](v) = F iC
Ts

[i](v) for every v ∈ VarC and every i with 0 ≤ i < len(F iC
To

).

The first requirement ensures that the criterion location is reached in both
the original program and the slice candidate the same number of times. The
second requirement ensures that the criterion variables have the same values
every time the criterion location is reached in the original program and in the
slice candidate.

Weiser [34] deals with the feature-richness of programming languages by
working on flow graphs, and slices are constructed by removing nodes from the
flow-graph. In his approach, however, only nodes with a single successor can be
removed while we can remove conditional jumps. Definition 4 is similar to the
concept of observation windows in [34]; however, we do not require the original
program to terminate. Thus, Definition 4 is more general than that of Weiser.

3 Relational Verification of Slice Candidates

Relational verification is an approach for establishing a formal proof that if a
relational precondition holds on two respective pre-states of two programs P and
Q then the respective post-states of P andQ will fulfill a relational postcondition.
For two complex programs that yet are similar to each other, much less effort is
required to prove their equivalence than to prove that they both satisfy a complex
functional specification. The effort for proving equivalence mainly depends on
the difference between the programs and not on their overall size and complexity.
This is particularly beneficial for the verification of slice candidates, because the
candidates are obtained by replacing program instructions with skip and thus
have a structure similar to the original program.



We formally define the property that is checked by a relational verifier. To
that end, we call a predicate π a transition predicate for a program P if for any
two states, s and s′, π(s, s′) holds if and only if program P when started in state
s terminates in state s′. Thus, for two programs, P and Q, a relational verifier
checks the validity of the following proof obligation:

Pre(sP , sQ) ∧ π(sP , s
′
P ) ∧ ρ(sQ, s

′
Q)→ Post(s′P , s

′
Q),

where π and ρ are transition predicates for P and Q, respectively, and Pre and
Post are respectively the relational precondition and postcondition.

However, a relational verifier that only checks this property is of limited use
for checking slice candidates. For the case in which the location of the slicing
criterion refers to the post-state (in Fig. 2a that corresponds to location 12
that contains the halt instruction), relational verification can be used to check
whether a slice candidate is a valid slice. For a slice candidate Q obtained from
a program P , this is done by setting Pre to require equal pre-states sP and sQ
and Post to require the criterion variables to evaluate to the same values in the
post-states s′P and s′Q. However, a successful proof shows the validity of the slice
candidates only for inputs for which both P and Q terminate, as the transition
predicates may be false for certain pre-states. In the rest of this section we show
how a relational verifier can be adapted to support slicing on locations other
than the end of the program and how to use relational verification to also show
that the program and candidate run in lockstep (i.e. the two executions run
through corresponding states), ensuring thus mutual termination.

Our slicing framework is based on the LLRêve [12,21] relational verifier,
which works on programs written in LLVM IR. It analyzes the control flow graphs
(CFGs) of the programs and reduces the validity of the relational specification
to the satisfiability of a set M of Horn-constraints over uninterpreted predicates.
The satisfiability of the Horn-constraints in M can be checked with state of the
art SMT solvers such as Z3 [27] and Eldarica [29].

If the analyzed programs contain loops, their CFGs contain cycles, which con-
stitute a challenge for verification because the number of iterations is unknown.
LLRêve handles cycles by using so called synchronization points, at which the
program state is abstracted by means of predicates. The paths between synchro-
nization points are cycle free and can be handled easily. Synchronization points

0: assign i 0
1: assign x 0

2: assign c1 (i >= N)
3: jnz c1 12

12: halt

4: assign t1 (N - 1)
5: assign c2 (i >= t1)
6: jnz c2 9

7: assign x h
8: jnz 1 10

9: assign x 42

10: assign i (i + 1)
11: jnz 1 2

B

E

1

2 3

4

5

6

7

Fig. 4: The CFG for the program in Fig. 2a



are defined by labeling basic blocks of the CFG with unique numbers. The entry
and the exit of a function are considered special synchronization points B and,
respectively, E. Additionally, the user can also define synchronization points at
any location of the analyzed programs. The user must ensure that there is a syn-
chronization point for each basic block of the CFG of the two programs, and has
to match them appropriately. In general, it is difficult to find matching synchro-
nization points for two programs; however, in the case of program slicing this
can be done automatically by keeping the CFG of the original program. Figure 4
shows the CFG for the program in Fig. 2a and each basic block is labeled with
the number of a synchronization point. In the CFG of the slice in Fig. 2b, the
assign instruction in block 4 is replaced with skip, the synchronization points
remain the same, and matching them is trivial. If a conditional jump is replaced
with skip, we only remove the edge to the block containing the jump target, thus
keeping the same synchronization points for the slice candidate.

Given one synchronization point per basic block, the CFG can be viewed as
a set of linear paths 〈n, π,m〉, where n and m denote the starting and end syn-
chronization points of the path, and π(s, s′) is the transition predicate between
the two synchronization points, with s and s′ being the states before and, re-
spectively, after the transition. Because the linear paths consists of assignments
only, the transition predicates can be easily computed. For two programs with a
similar structure, it is expected that there exist coupling predicates that describe
the relation between the program states at two corresponding synchronization
points. For two programs P and Q we introduce an uninterpreted coupling pred-
icate Cn(sp, sq) for each synchronization point n, as shown in Fig. 5. The rela-
tional precondition Pre and postcondition Post are the coupling predicates for
the special synchronization points B and E, respectively. The set M consists of
Horn-constraints over these coupling predicates. For two linear paths between
synchronization points n and m in programs P and Q characterized by the two
transition predicates π and ρ, respectively, this constraint is added to M :

Cn(sp, sq) ∧ π(sp, s
′
p) ∧ ρ(sq, s

′
q)→ Cm(s′p, s

′
q) (1)

To ensure that there is no divergence from lockstep, for every two paths 〈n, π,m〉
and 〈n, ρ, k〉 in programs P and Q, respectively, with m 6= k,m 6= n, n 6= k the
following constraint is added to M :

Cn(sp, sq) ∧ π(sp, s
′
p) ∧ ρ(sq, s

′
q)→ false (2)

Theorem 1. Let P and Q be programs specified with the relational precondition
Pre and postcondition Post, for which matching synchronization points have been
found. Let M be the set of constraints generated according to 1 and 2. If M is
satisfiable, then for every pair of pre-states satisfying Pre:
1. The synchronization points are reached in the same order in P and Q,
2. If P terminates, then so does Q and Post holds for the two post-states.

Proof. For distinct synchronization points n,m, k if constraint 2 has a model,
then (case 1) π or ρ is false, meaning that the execution of P or Q cannot



B n1 n2 . . . E

B n1 n2 . . . E

Pre Cn1 Cn2 Post

Fig. 5: Illustration of coupled control flow of two fully synchronized programs

reach respectively m or k from n, or (case 2) Cn is false meaning that n is not
reachable in P or Q, or per (chaining of) constraint 1 the pre-states do not satisfy
the precondition. Thus, P and Q reach the synchronization points (including E,
thus implying mutual termination) in the same order. For two synchronization
points n,m if constraint 1 has a model, then (case 1) m cannot be reached from
n in P or Q, or (case 2) Cn is false and n is not reachable or the pre-states
do not satisfy the precondition, or (case 3) starting in n with Cn holding, both
programs reach m and Cm holds there. The constraints generated according to 1
are thus interpolants that show the validity of the relational specification. ut

To check the validity of a slice candidate for the cases in which the criterion
location is in the middle of the program, we adapt the constraints generated by
the relational specification. The relational precondition Pre still requires equal
pre-states, while the relational postcondition Post is set to true. We ensure
a synchronization point nC exists in the program and slice candidate at the
location of the criterion instruction. For example 2a nC is the synchronization
point 5 in Fig. 4. If the criterion location is part of a basic block with more
than one instruction, we split that basic block up such that we obtain a block
containing only the criterion location. For a program P with a slice candidate
Q and a given slicing criterion (iC , VC) with a synchronization point nC we add
the following constraint:

CnC
(sP , sQ)→ ∀x ∈ VC sP (x) = sQ(x) (3)

Theorem 2. Let P be a program and Q a slice candidate specified with the
relational precondition Pre requires equal pre-states and postcondition Post is
true. Let M be the set of constraints generated according to 1, 2 and 3. If M is
satisfiable, then for every pair of pre-states that fulfill Pre:
1. The criterion location is reached equally often in P and Q,
2. Every i-th time the criterion instruction is reached, the criterion variables

are equal in P and Q,
3. If P terminates, then so does Q.

Proof. From Theorem 1 results that P and Q run in lockstep with respect to
the synchronization points. The instruction at the criterion location has its own
synchronization point. As a consequence of this, the criterion instruction is exe-
cuted in both P and Q the same number of times and the candidate terminates
iff the original program terminates. Due to Constraint 3, the coupling predicate



corresponding to the criterion locations ensures that each time the criterion lo-
cation is reached, the criterion variables have the same values. ut

Thus, for a program P with a slice candidate Q and a slicing criterion
(iC , VC), if the set M containing the constraints 1, 2 and 3 for every synchro-
nization point is satisfiable, then Q is a valid slice according to Definition 4.
Moreover, if the set M is unsatisfiable, then the SMT solver returns an unsatis-
fiability proof that contains a counterexample with two concrete inputs for which
the slice property is violated – provided the SMT solver does not time out.

4 A Framework for Automatic Slicing

Being able to use relational verification to check whether a slice candidate is
valid, we construct a framework for automatic program slicing. The framework,
shown in Fig. 6, consists of two components which interact with each other. The
first component, the candidate generation engine, generates the slice candidates
and sends them to the second component, the relational verifier (in this case
LLRêve). The relational verifier transmits one of three possible answers to the
candidate generation engine: (1) the candidate is a valid slice, (2) the candidate
is not valid along with an input that leads to a violation of the slice property
(Definition 4), or (3) a timeout. The candidate generation engine can use the
answer to adapt its candidate generation strategy.

An advantage of the framework is that the candidate generation engine does
not need to care about the correctness of the slice candidates it generates– as this
is taken care of by the relational verifier. The framework can easily be extended
with candidate generation strategies other than those that we present in this
paper. Thus, it provides a platform for relational verification based slicing for
the software slicing community.

We distinguish between two types of candidate generation strategies. On
the one hand there are strategies that generate candidates by replacing program
instructions by skip according to some heuristics not using any information from
the relational verifier other than the existence of a counterexample. Examples
for such properties are described in Section 4.1. On the other hand there are
strategies that also consider the values from the counterexample when generating

Relational
Verification

Dynamic
Slicing

Heuristics

Candidate
Generation

Candidate

Counterexample
       Timeout

Valid Slice

Fig. 6: The slicing framework



the next slice candidates. We present one such strategy, counterexample guided
slicing, in Section 4.2.

4.1 Removing Instructions based on Heuristics

The brute forcing (BF) strategy generates all possible slice candidates. As their
number is exponential w.r.t. the number of instructions in the original program,
it is clear that this strategy does not scale for large programs. Nevertheless,
this strategy has the benefit of generating the smallest possible slice with our
framework. Brute forcing can be used as part of a divide and conquer strategy to
slice parts of programs which are small enough. As an improvement, this strategy
can start by generating the candidates in ascending order with respect to their
size, i.e. the number of instructions that the candidate retains from the original
program. Once a candidate is shown to be a valid slice, no further candidates
need to be checked, as their size cannot be smaller than that of the found slice.

The single statement elimination (SSE) strategy successively replaces a single
instruction of the original program with skip, and checks whether the obtained
program is a valid slice. If this is the case, the strategy attempts to successively
remove every other instruction as well. The strategy requires, in the worst case,
quadratically many calls to the relational verifier, which occurs when in each
iteration the last candidate is shown to be a valid slice. Although this approach
scales better than BF, it finds only slices in which program instructions can be
removed individually. Groups of instructions such as

assign x (x + 50)

assign x (x - 50)

where the removal of a single instruction results in an invalid slice candidate,
but removing the entire group would result in a valid slice cannot be removed.
The SSE strategy can be generalized to support the removal of groups of up to
a given number of instructions.

4.2 Counterexample Guided Slicing

The counterexample guided slicing (CGS) strategy uses dynamic slicing to gen-
erate slice candidates. Dynamic slicing was first introduced in [23], and a survey
on dynamic slicing approaches can be found in [24]. For the CGS strategy we
adapted the dynamic slicing algorithm from [2], which is a syntactic approach
based on on the Program Dependence Graph (PDG) [13]. The PDG is a directed
graph in which nodes represent program instructions, conditions, or input pa-
rameters, and edges represent possible dependencies between the nodes. An edge
from node n1 to node n2 encodes that n1 may depend on n2. There are roughly
two types of dependencies in the PDG. On one hand data dependencies arise
when one node uses program variables which are defined in another node. Con-
trol dependencies, on the other hand, arise when the execution of a node depends
on the other, control, node (e.g. an instruction may be executed only if the the
condition of a conditional jump is true). Whether an edge exists between two



nodes in the PDG is determined syntactically by analyzing the CFG. Because
the CFG represents an over-approximation of the possible program executions,
the PDG edges also represent an over-approximation of the real dependencies in
the program. Using the PDG, a backward slice is computed by finding all nodes
that are reachable from a node representing the criterion location. On the most
basic level, the algorithm in [2], which receives the PDG and an execution trace
as inputs, works by computing the subgraph of the PDG which contains only
the nodes corresponding to those instructions which have been executed in the
program trace. The dynamic slice is computed using this subgraph and further
optimizations are possible, as it has to be valid only for a single input.

A PDG node can depend on multiple other nodes, but some of these depen-
dencies are determined by the execution path of the program (e.g. a variable can
be assigned on more than one branch, resulting in multiple dependencies for in-
structions that use that variable). Unlike static slicing, for dynamic slicing only
one execution path is relevant – the one corresponding to the input for which the
dynamic slice is computed. Thus, PDG edges representing dependencies that are
relevant only for other inputs can be removed. A similar situation arises with
loops: at different loop iterations, a node inside the loop body may have different
dependencies. When performing dynamic slicing, the number of iterations done
by a loop is known (assuming the program terminates for the input), and the
PDG can be extended with nodes representing the body instructions at different
iterations, which also leads to an increased precision of the dynamic slice. The
extended PDG is called a dynamic dependence graph (DDG) in [2]. Based on
the observation that the nodes inside the loop body can depend on only a finite
number of other nodes, a new node is added to the PDG just for those iterations
in which the corresponding instruction has different dependencies than in all
previous iterations. This optimizations give rise to the reduced dynamic depen-
dence graph (RDDG). Thus, by ignoring dependencies caused by other inputs
than the one for which the dynamic slice is computed, additional instructions
can be removed than in the case of static slicing. To ensure compatibility with
the slicing property from Definition 4, we adapt this algorithm to support cri-
terion locations other than the end of the program. For this, when computing
the dynamic slice with the RDDG we do not mark the return statement, as is
done in [2], but rather all nodes that correspond to the criterion location. If the
criterion location is inside a loop, then multiple nodes are marked.

The adapted RDDG dynamic slicing algorithm is purely syntactical and thus
scales much better than a semantic approach. Thus we can use it as part of
the candidate generation strategy, as relational verification of slice candidates
remains the bottleneck of our framework. A property of the dynamic slices is
the fact that the union of multiple dynamic slices can be computed.

Theorem 3. Let P be a program and s1 and s2 be two initial states for which
the respective dynamic slices Pd1 and Pd2 have been computed. The union of the
dynamic slices Pd1 ∪ Pd2, that contains all instructions from P which appear in
Pd1 or in Pd2 is a dynamic slice for both initial states s1 and s2.



Proof. The correctness of the dynamic slicing algorithm implies that in a dy-
namic slice for the initial state s1 (s2) only those instructions that do not in-
fluence termination and the values of the criterion variables are replaced with
skip. If any of the replaced instructions are brought back, then the obtained
program is still a valid dynamic slice for s1 (s2). ut

Using this property we can present the CGS strategy, shown in Algorithm 1.
It starts with an the initialization of the slice candidate Ps with a program Φ, in
which all instructions have been replaced with skip, of an arbitrary initial state
s, e.g. one in which all variables are set to 0 and of the variable b which will be
set to true when a valid slice will be found. The strategy uses the initial state
s with the criterion (iC , VC) to compute a dynamic slice Pd. The instructions
from Pd are then added to the slice candidate Ps which is checked for validity
by the relational verifier. If Ps is a valid slice candidate, the variable b is set
to true and the strategy returns Ps. Otherwise, the relational verifier delivers a
counterexample, which is used as the initial state s in the next iteration. Both
the dynamic slicer and relational verifier may timeout, in which case the strategy
returns the original program P .

Theorem 4. Let P be a program and Pd be a dynamic slice for all initial states
s ∈ Sd, and sce be the counterexample obtained when checking whether Pd is a
valid slice of P . Then the following holds:
1. sce /∈ Sd.
2. The dynamic slice Pce for the initial state sce contains at least one instruction

which is not in Pd.

Proof. Both properties follow from the correctness of the relational verifier and of
the dynamic slicer. (1) If sce ∈ Sd then the relational verifier delivered a spurious
counterexample or the dynamic slicer delivered an invalid dynamic slice. (2) If
Pce contains no additional instruction compared to Pd, then Pd∪Pce = Pd which
means that Pd is a dynamic slice for sce. This implies that the relational verifier
delivered a spurious counterexample. ut

Data: Program P , Slicing criterion (iC , VC)
Result: Program Slice Ps

Ps ← Φ; s← 0̄; b← false;
repeat

Pd ← dynamicSlice(P, s, (iC , VC));
Ps ← Ps ∪ Pd;
(b, s)← relationalVerification(P, Ps, (iC , VC));

until b ∨ timeout ;
if timeout then

Ps ← P ;
end
return Ps;

Algorithm 1: The CGS Strategy



Theorem 4 guarantees that the CGS strategy adds at least one instruction
back after each iteration (if no timeout occurred). Thus, the number of calls
of the relational verifier is linear in the number of program instructions. The
CGS strategy has the least number of calls to the relational verifier compared
with the other strategies presented in this paper. Nevertheless, it comes with
some disadvantages. First, the program needs to be executed at each iteration,
which – depending on the analyzed program – can cause performance issues
and for some inputs the program may not even terminate. Second, the CGS
strategy is vulnerable to timeouts of the relational verifier, which are inevitable,
as the program-equivalence problem is undecidable. If a timeout occurs, then the
strategy fails entirely and must return the original program as the slice candidate,
while the BF and SSE strategies could continue their search for a valid slice
candidate. Third, the precision of CGS depends on the precision of the dynamic
slicing approach used in the candidate generation. Even though dynamic slicing
approaches which work on a syntactic level only can remove more statements
than static slicing approaches, the dynamic slices they compute are still over-
approximations, as they do not consider the semantics of the instructions.

5 Discussion

We start the discussion by reiterating the evaluation results of the implementa-
tion of the framework consisting of the tool SemSlice [5], as shown in Table 1.
For the evaluation, we used a collection of small but intricate examples (e.g., the
example of Fig. 1 or a routine in which the same value is first added and then sub-
tracted), each focusing on a particular challenge for semantics-aware slicing was
used. Some examples are taken from slicing literature [4,7,14,19,33]. The second
column indicates the source of each example, the third the number of LLVM-
IR statements in the program. For each slice candidate generation-method from
Section 4, the table lists the number of statements in the smallest slice found
by SemSlice, the (wall) time needed by the tool, and the number of calls to
the relational verifier. The experiments were conducted on a machine with an
Intel Core I5-6600K CPU and 16GB RAM. The exponential BF approach works
satisfactorily fast on functions with up to 20 statements, and while it requires
more time than the other approaches it computes more precise slices. For exam-
ples with less than 10 statements the brute-force approach takes less than one
second. The other two approaches achieved slices of similar precision (to each
other) and required less than one second for most examples.

Our slicing approach works on an intermediate representation language. This
is beneficial for the implementation of the approach, as it does not need to
handle all features of a modern high level programming language. However,
one of the uses for program slicing is to help the user debug and comprehend
a program written a high level language. It is possible to perform relational
verification of such programs, the early version of LLRêve was in fact working
on a simple while language in [12], LLVM-IR was later chosen [21] to increase
the practicability of LLRêve. We believe the current framework can be adapted



Table 1: Evaluation
Original BF SSE CGS

Example Source #stmts time (s) #stmts #calls time (s) #stmts #calls time (s) #stmts #calls

count occurrence error self 50 13 42 11
count occurrence result self 50 16 44 13
dead code after ssa [33] 4 <1 2 4 <1 2 4 <1 2 1
dead code unused variable self 3 <1 2 2 <1 2 3 <1 2 1
identity not modifying [14] 8 <1 3 3 <1 7 5 <1 6 1
identity plus minus 50 [4] 5 <1 2 4 <1 5 4 <1 5 1
iflow cyclic [33] 18 62 14 2197 <1 16 6 <1 17 1
iflow dynfamic override self 15 23 8 1298 <1 11 8 <1 12 1
iflow endofloop (Figure 1) self 19 118 15 4065 <1 16 7 <1 18 2
intermediate self 13 4 11 129 <1 12 5 <1 12 2
requires path sensitivity [19] 20 647 16 26894 <1 17 10 <1 18 3
single pass removal self 13 <1 3 7 <1 6 11 <1 8 1
unchanged over itteration self 20 29 9 932 1 15 14 <1 20 2
unreachable code nested self 10 <1 2 1 <1 9 1 <1 4 1
whole loop removable self 20 15 8 469 <1 17 5 <1 17 2

for slicing high level languages by either (1) attempting to translate back the
IR slice to the high level language, or (2) by defining the slicing candidate in
the high level language and then translating both the original program and the
slice candidate into the IR and then using the extended relational verifier. For
the first option we expect that only an over-approximation of the IR slice can be
obtained by translating it back into the high level language, similar to what was
done in [17]. As for the second solution, the CFGs of the original program and
slice candidate in the IR may be so different that our approach would no longer
be able to automatically find matching synchronization points. A solution to this
would be to automatically annotate the original program and its slice candidate
in the high level language, thus marking the synchronization points and using
this marks in the IR translation.

The IR language that we used to present our approach is not inter-procedural.
While we could consider all programs as having been inlined beforehand, recur-
sive procedures would not be supported. The relational verifier supports dealing
with function calls using mutual function summaries [21] which abstract two
matching function calls using coupling predicates. In general it is difficult to
find matching function calls, but for checking the validity of slice candidates this
can be done automatically, similar to finding matching synchronization points.
Thus, our approach can be extended to support recursive functions; however the
function calls themselves may not be removed, otherwise the mutual function
summaries cannot be used.

The completeness of our approach, i.e. whether a valid slice is deemed as such,
is limited by two factors. First, the relational verifier is required to automatically
infer the coupling predicates needed to verify the validity of a slice candidate. In
practice the relational verifier works well when the needed coupling predicates
are limited to linear arithmetics [22]. The second factor limiting completeness is
the requirement that the original program and the slice candidate must run in
lockstep. This is needed to ensure the mutual termination and that the criterion



location is executed the same number of times. Thus, whereas we can remove
instructions from inside a loop, we are not able to remove the loop itself (in our
case the conditional jump instruction), even if it is empty – i.e. it loops over skip
instructions. A possible solution to this is to check termination through other
means and then remove empty loops that are guaranteed to terminate.

6 Related Work

Static slicing is an active area of research and many approaches have been de-
veloped. We present those that are most similar to our work.

Assertion based slicing [4] is also a slicing approach that takes the semantics
of the program into consideration. Program methods must be specified with a
contract, which also represents the slicing criterion, i.e. statements are removed
that the reduced program still fulfills the contract. This approach combines pre-
and postcondition-based slicing. Postcondition-based slicing works by computing
the weakest precondition before every program location. If the weakest precon-
dition at a location i implies the weakest precondition at a location j with i < j,
then the instructions between the locations i and j may be removed, as they
do not contribute to the truth value of the postcondition. Precondition-based
slicing works similarly by using a strongest postcondition calculus. Unlike in our
approach, loop invariants are required and only groups of instructions that are
at consecutive program locations can be removed. This approach improves and
combines older approaches [9,8], an implementation also exists [10].

The approach in [25] also uses a method’s contract as the slicing criterion.
Using a proof for a bounded number of loop iterations and type instances, it finds
the parts of the program which were not needed for the bounded proof and con-
structs a slice candidate. However, the program parts that are deemed irrelevant
are not removed, but replaced with an abstraction. Thus, the slice candidate
over-approximates the behavior of the original program. If the contract is shown
to be valid for the slice candidate, then it is also valid for the original program.
A counterexample to the validity of the contract for the slice candidate can be
used to generate a more concrete candidate, making this approach similar to the
CGS strategy. For proving the contract of the slice candidate, loop invariants
and user interaction are needed.

Path sensitive backward slicing [19] is another slicing approach that takes
the program’s semantics into consideration. The main idea is to symbolically
execute the program and check the satisfiability of the path condition of every
execution path. Only the satisfiable paths are used for computing the slice.
The path explosion is mitigated by reusing the results of already performed
satisfiability checks. The approach handles loops by using abstract interpretation
to generate loop invariants, which can lead to an over-approximated description
of the loop behavior. Thus, while the approach offers an increased precision when
compared to syntactic approaches, it is not able slice the program in Fig. 1a.
An implementation of this approach is available in the tool Tracer [20]. The idea
of discarding dependencies that can only occur on infeasible program paths has



also been explored in other works e.g. [30,7]. For these approaches, a compromise
between the precision and scalability had to be found.

Abstract program slicing [15] is an approach which makes use of the program’s
semantics, however a different slicing criterion is used. Instead of preserving
those instructions that affect the exact values of the criterion variables at the
criterion location, this approach preserves the statements that affect a property
of the criterion variable. The properties pursued in this approach are whether
the variables belong to a given abstract domain, e.g. the positive integers. Using
abstract interpretation, for some operations the abstract domain of the output is
known – provided the abstract domains of the inputs are also known. Thus some
dependencies modeled in the PDG can be removed. This approach can generate
slices which are not valid according to Definition 4.

The approach in [28] uses the formal semantics definitions of a language
to automatically generate a slicer for programs written in that language. The
approach to slicing works in two steps: first it analyzes the formal semantics
definitions and computes for every instruction the parameters on which that
instruction has side effects (data or control dependencies). This information is
then used in the second step, in which for program and set of program variables,
which constitutes the criterion, an over-approximated set of instructions that
have a direct or indirect side effect on them is computed. This set constitutes
the slice. The focus of this work lies, however, on the automatic generation of
program slicers and not on the precision of the slices generated by them. This
approach is implemented in the tool Chisel [3].

Other, syntactic, slicing approaches have been surveyed in [35] and in [31],
and a survey of dynamic slicing techniques can be found in [24].

7 Conclusion and Future Work

In this paper we extended a relational verification approach such that it can
check whether a slice candidate is indeed a valid slice. Based on this, we built
a framework for precise and automatic static slicing which consists of a candi-
date generation engine and the extended relational verifier. We presented three
strategies to compute slice candidates, where the counterexample guided slicing
is a more sophisticated approach. It uses the counterexample provided by the
relational verifier to refine the slice candidate with a dynamic slicer.

As future work we plan to improve the precision of the slices by performing
an additional analysis on empty loops to check whether they terminate. If this
is the case, they can be removed without violating the slice property. Another
research direction we wish to pursue is to improve the performance of the rela-
tional verifier by using PDGs to simplify the programs that need to be checked
for equivalence, using the fact that two programs with isomorphic PDGs are
equivalent, as shown in [18]. Furthermore, we will investigate how the results
(e.g. coupling invariants) of the SMT solver employed by the relational verifier
can be used when checking another slice candidate, constructed from the same
original program.



References

1. LLVM language reference manual. https://llvm.org/docs/LangRef.html,
accessed: 2019-02-06

2. Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: Proceedings of the
ACM SIGPLAN 1990 Conference on Programming Language Design and Im-
plementation. pp. 246–256. PLDI ’90, ACM, New York, NY, USA (1990).
https://doi.org/10.1145/93542.93576
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22. Klebanov, V., Rümmer, P., Ulbrich, M.: Automating regression verification of
pointer programs by predicate abstraction. Formal Methods in System Design
52(3), 229–259 (Jun 2018). https://doi.org/10.1007/s10703-017-0293-8

23. Korel, B., Laski, J.W.: Dynamic program slicing. Inf. Process. Lett. 29(3), 155–163
(1988). https://doi.org/10.1016/0020-0190(88)90054-3

24. Korel, B., Rilling, J.: Dynamic program slicing methods. Information & Soft-
ware Technology 40(11-12), 647–659 (1998). https://doi.org/10.1016/S0950-
5849(98)00089-5

25. Liu, T., Tyszberowicz, S., Herda, M., Beckert, B., Grahl, D., Taghdiri, M.: Com-
puting specification-sensitive abstractions for program verification. In: Fränzle,
M., Kapur, D., Zhan, N. (eds.) Dependable Software Engineering: Theories,
Tools, and Applications. pp. 101–117. Springer International Publishing (2016).
https://doi.org/10.1007/978-3-319-47677-3 7

26. Lucia, A.D.: Program slicing: methods and applications. In: Proceedings First
IEEE International Workshop on Source Code Analysis and Manipulation. pp.
142–149 (Nov 2001). https://doi.org/10.1109/SCAM.2001.972675

27. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 337–340. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78800-3 24
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