273 research outputs found

    Predatory capacity of a shorefly, Ochthera chalybescens, on malaria vectors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since <it>Ochthera chalybescens </it>had been reported to prey on African malaria vectors, the predatory capacity of adults of this species on <it>Anopheles gambiae </it>sensu stricto was explored.</p> <p>Method</p> <p>Predatory capacity of this fly on <it>A. gambiae </it>s.s. was tested at all developmental stages, including the adult stage in the laboratory setting. Effects of water depth on its predatory capacity were also examined.</p> <p>Results</p> <p>This study revealed that <it>O. chalybescens </it>preyed on mosquitoes at all life stages except eggs. It was able to prey on an average of 9.8 to 18.8 mosquito larvae in 24 hrs. Mosquito larva size and water depth did not affect predatory capacity. However, the predacious fly preyed on significantly more 2<sup>nd</sup>-instar larvae than on pupae when larvae and pupae were both available.</p> <p>Conclusion</p> <p><it>Ochthera chalybescens </it>is, by all indications, an important predator of African malaria vectors.</p

    Gene expression meta-analysis of Parkinson’s disease and its relationship with Alzheimer’s disease

    Get PDF
    Abstract Parkinson’s disease (PD) and Alzheimer’s disease (AD) are the most common neurodegenerative diseases and have been suggested to share common pathological and physiological links. Understanding the cross-talk between them could reveal potentials for the development of new strategies for early diagnosis and therapeutic intervention thus improving the quality of life of those affected. Here we have conducted a novel meta-analysis to identify differentially expressed genes (DEGs) in PD microarray datasets comprising 69 PD and 57 control brain samples which is the biggest cohort for such studies to date. Using identified DEGs, we performed pathway, upstream and protein-protein interaction analysis. We identified 1046 DEGs, of which a majority (739/1046) were downregulated in PD. YWHAZ and other genes coding 14–3-3 proteins are identified as important DEGs in signaling pathways and in protein-protein interaction networks (PPIN). Perturbed pathways also include mitochondrial dysfunction and oxidative stress. There was a significant overlap in DEGs between PD and AD, and over 99% of these were differentially expressed in the same up or down direction across the diseases. REST was identified as an upstream regulator in both diseases. Our study demonstrates that PD and AD share significant common DEGs and pathways, and identifies novel genes, pathways and upstream regulators which may be important targets for therapy in both diseases

    Cranial Growth and Variation in Edmontosaurs (Dinosauria: Hadrosauridae): Implications for Latest Cretaceous Megaherbivore Diversity in North America

    Get PDF
    The well-sampled Late Cretaceous fossil record of North America remains the only high-resolution dataset for evaluating patterns of dinosaur diversity leading up to the terminal Cretaceous extinction event. Hadrosaurine hadrosaurids (Dinosauria: Ornithopoda) closely related to Edmontosaurus are among the most common megaherbivores in latest Campanian and Maastrichtian deposits of western North America. However, interpretations of edmontosaur species richness and biostratigraphy have been in constant flux for almost three decades, although the clade is generally thought to have undergone a radiation in the late Maastrichtian. We address the issue of edmontosaur diversity for the first time using rigorous morphometric analyses of virtually all known complete edmontosaur skulls. Results suggest only two valid species, Edmontosaurus regalis from the late Campanian, and E. annectens from the late Maastrichtian, with previously named taxa, including the controversial Anatotitan copei, erected on hypothesized transitional morphologies associated with ontogenetic size increase and allometric growth. A revision of North American hadrosaurid taxa suggests a decrease in both hadrosaurid diversity and disparity from the early to late Maastrichtian, a pattern likely also present in ceratopsid dinosaurs. A decline in the disparity of dominant megaherbivores in the latest Maastrichtian interval supports the hypothesis that dinosaur diversity decreased immediately preceding the end Cretaceous extinction event

    Difficulties when Assessing Birdsong Learning Programmes under Field Conditions: A Re-Evaluation of Song Repertoire Flexibility in the Great Tit

    Get PDF
    There is a remarkable diversity of song-learning strategies in songbirds. Establishing whether a species is closed- or open-ended is important to be able to interpret functional and evolutionary consequences of variation in repertoire size. Most of our knowledge regarding the timing of vocal learning is based on laboratory studies, despite the fact that these may not always replicate the complex ecological and social interactions experienced by birds in the wild. Given that field studies cannot provide the experimental control of laboratory studies, it may not be surprising that species such as the great tit that were initially assumed to be closed-ended learners have later been suggested to be open-ended learners. By using an established colour-ringed population, by following a standardized recording protocol, and by taking into account the species' song ecology (using only recordings obtained during peak of singing at dawn), we replicated two previous studies to assess song repertoire learning and flexibility in adult wild great tits elicited by social interactions. First, we performed a playback experiment to test repertoire plasticity elicited by novel versus own songs. Additionally, in a longitudinal study, we followed 30 males in two consecutive years and analysed whether new neighbours influenced any change in the repertoire. Contrary to the previous studies, song repertoire size and composition were found to be highly repeatable both between years and after confrontation with a novel song. Our results suggest that great tits are closed-ended learners and that their song repertoire probably does not change during adulthood. Methodological differences that may have led to an underestimation of the repertoires or population differences may explain the discrepancy in results with previous studies. We argue that a rigorous and standardized assessment of the repertoire is essential when studying age- or playback-induced changes in repertoire size and composition under field conditions

    Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle

    Get PDF
    Experiments with dinitrogen-, nitrite-, nitrate-containing solutions were conducted without headspace in Ti reactors (200°C), borosilicate septum bottles (70°C) and HDPE tubes (22°C) in the presence of Fe and Ni metal, awaruite (Ni80Fe20) and tetrataenite (Ni50Fe50). In general, metals used in this investigation were more reactive than alloys toward all investigated nitrogen species. Nitrite and nitrate were converted to ammonium more rapidly than dinitrogen, and the reduction process had a strong temperature dependence. We concluded from our experimental observations that Hadean submarine hydrothermal systems could have supplied significant quantities of ammonium for reactions that are generally associated with prebiotic synthesis, especially in localized environments. Several natural meteorites (octahedrites) were found to contain up to 22 ppm Ntot. While the oxidation state of N in the octahedrites was not determined, XPS analysis of metals and alloys used in the study shows that N is likely present as nitride (N3-). This observation may have implications toward the Hadean environment, since, terrestrial (e.g., oceanic) ammonium production may have been supplemented by reduced nitrogen delivered by metal-rich meteorites. This notion is based on the fact that nitrogen dissolves into metallic melts

    Mitogenomic phylogenetic analyses of the Delphinidae with an emphasis on the Globicephalinae

    Get PDF
    BACKGROUND: Previous DNA-based phylogenetic studies of the Delphinidae family suggest it has undergone rapid diversification, as characterised by unresolved and poorly supported taxonomic relationships (polytomies) for some of the species within this group. Using an increased amount of sequence data we test between alternative hypotheses of soft polytomies caused by rapid speciation, slow evolutionary rate and/or insufficient sequence data, and hard polytomies caused by simultaneous speciation within this family. Combining the mitogenome sequences of five new and 12 previously published species within the Delphinidae, we used Bayesian and maximum-likelihood methods to estimate the phylogeny from partitioned and unpartitioned mitogenome sequences. Further ad hoc tests were then conducted to estimate the support for alternative topologies. RESULTS: We found high support for all the relationships within our reconstructed phylogenies, and topologies were consistent between the Bayesian and maximum-likelihood trees inferred from partitioned and unpartitioned data. Resolved relationships included the placement of the killer whale (Orcinus orca) as sister taxon to the rest of the Globicephalinae subfamily, placement of the Risso's dolphin (Grampus griseus) within the Globicephalinae subfamily, removal of the white-beaked dolphin (Lagenorhynchus albirostris) from the Delphininae subfamily and the placement of the rough-toothed dolphin (Steno bredanensis) as sister taxon to the rest of the Delphininae subfamily rather than within the Globicephalinae subfamily. The additional testing of alternative topologies allowed us to reject all other putative relationships, with the exception that we were unable to reject the hypothesis that the relationship between L. albirostris and the Globicephalinae and Delphininae subfamilies was polytomic. CONCLUSION: Despite their rapid diversification, the increased sequence data yielded by mitogenomes enables the resolution of a strongly supported, bifurcating phylogeny, and a chronology of the divergences within the Delphinidae family. This highlights the benefits and potential application of large mitogenome datasets to resolve long-standing phylogenetic uncertainties

    Genetic Effects at Pleiotropic Loci Are Context-Dependent with Consequences for the Maintenance of Genetic Variation in Populations

    Get PDF
    Context-dependent genetic effects, including genotype-by-environment and genotype-by-sex interactions, are a potential mechanism by which genetic variation of complex traits is maintained in populations. Pleiotropic genetic effects are also thought to play an important role in evolution, reflecting functional and developmental relationships among traits. We examine context-dependent genetic effects at pleiotropic loci associated with normal variation in multiple metabolic syndrome (MetS) components (obesity, dyslipidemia, and diabetes-related traits). MetS prevalence is increasing in Western societies and, while environmental in origin, presents substantial variation in individual response. We identify 23 pleiotropic MetS quantitative trait loci (QTL) in an F16 advanced intercross between the LG/J and SM/J inbred mouse strains (Wustl:LG,SM-G16; n = 1002). Half of each family was fed a high-fat diet and half fed a low-fat diet; and additive, dominance, and parent-of-origin imprinting genotypic effects were examined in animals partitioned into sex, diet, and sex-by-diet cohorts. We examine the context-dependency of the underlying additive, dominance, and imprinting genetic effects of the traits associated with these pleiotropic QTL. Further, we examine sequence polymorphisms (SNPs) between LG/J and SM/J as well as differential expression of positional candidate genes in these regions. We show that genetic associations are different in different sex, diet, and sex-by-diet settings. We also show that over- or underdominance and ecological cross-over interactions for single phenotypes may not be common, however multidimensional synthetic phenotypes at loci with pleiotropic effects can produce situations that favor the maintenance of genetic variation in populations. Our findings have important implications for evolution and the notion of personalized medicine

    Diversity dynamics in New Caledonia: towards the end of the museum model?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The high diversity of New Caledonia has traditionally been seen as a result of its Gondwanan origin, old age and long isolation under stable climatic conditions (the museum model). Under this scenario, we would expect species diversification to follow a constant rate model. Alternatively, if New Caledonia was completely submerged after its breakup from Gondwana, as geological evidence indicates, we would expect species diversification to show a characteristic slowdown over time according to a diversity-dependent model where species accumulation decreases as space is filled.</p> <p>Results</p> <p>We reanalyze available datasets for New Caledonia and reconstruct the phylogenies using standardized methodologies; we use two ultrametrization alternatives; and we take into account phylogenetic uncertainty as well as incomplete taxon sampling when conducting diversification rate constancy tests. Our results indicate that for 8 of the 9 available phylogenies, there is significant evidence for a diversification slowdown. For the youngest group under investigation, the apparent lack of evidence of a significant slowdown could be because we are still observing the early phase of a logistic growth (i.e. the clade may be too young to exhibit a change in diversification rates).</p> <p>Conclusions</p> <p>Our results are consistent with a diversity-dependent model of diversification in New Caledonia. In opposition to the museum model, our results provide additional evidence that original New Caledonian biodiversity was wiped out during the episode of submersion, providing an open and empty space facilitating evolutionary radiations.</p
    corecore