189 research outputs found
Low-carbohydrate diet in type 2 diabetes: stable improvement of bodyweight and glycemic control during 44 months follow-up
<p>Abstract</p> <p>Background</p> <p>Low-carbohydrate diets, due to their potent antihyperglycemic effect, are an intuitively attractive approach to the management of obese patients with type 2 diabetes. We previously reported that a 20% carbohydrate diet was significantly superior to a 55–60% carbohydrate diet with regard to bodyweight and glycemic control in 2 groups of obese diabetes patients observed closely over 6 months (intervention group, n = 16; controls, n = 15) and we reported maintenance of these gains after 22 months. The present study documents the degree to which these changes were preserved in the low-carbohydrate group after 44 months observation time, without close follow-up. In addition, we assessed the performance of the two thirds of control patients from the high-carbohydrate diet group that had changed to a low-carbohydrate diet after the initial 6 month observation period. We report cardiovascular outcome for the low-carbohydrate group as well as the control patients who did not change to a low-carbohydrate diet.</p> <p>Method</p> <p>Retrospective follow-up of previously studied subjects on a low carbohydrate diet.</p> <p>Results</p> <p>The mean bodyweight at the start of the initial study was 100.6 ± 14.7 kg. At six months it was 89.2 ± 14.3 kg. From 6 to 22 months, mean bodyweight had increased by 2.7 ± 4.2 kg to an average of 92.0 ± 14.0 kg. At 44 months average weight has increased from baseline g to 93.1 ± 14.5 kg. Of the sixteen patients, five have retained or reduced bodyweight since the 22 month point and all but one have lower weight at 44 months than at start. The initial mean HbA1c was 8.0 ± 1.5%. After 6, 12 and 22 months, HbA1c was 6.1 ± 1.0%, 7.0 ± 1.3% and 6.9 ± 1.1% respectively. After 44 months mean HbA1c is 6.8 ± 1.3%.</p> <p>Of the 23 patients who have used a low-carbohydrate diet and for whom we have long-term data, two have suffered a cardiovascular event while four of the six controls who never changed diet have suffered several cardiovascular events.</p> <p>Conclusion</p> <p>Advice to obese patients with type 2 diabetes to follow a 20% carbohydrate diet with some caloric restriction has lasting effects on bodyweight and glycemic control.</p
Low-carbohydrate diet in type 2 diabetes. Stable improvement of bodyweight and glycemic control during 22 months follow-up
BACKGROUND: Low-carbohydrate diets in the management of obese patients with type 2 diabetes seem intuitively attractive due to their potent antihyperglycemic effect. We previously reported that a 20 % carbohydrate diet was significantly superior to a 55–60 % carbohydrate diet with regard to bodyweight and glycemic control in 2 non-randomised groups of obese diabetes patients observed closely over 6 months. The effect beyond 6 months of reduced carbohydrate has not been previously reported. The objective of the present study, therefore, was to determine to what degree the changes among the 16 patients in the low-carbohydrate diet group at 6-months were preserved or changed 22 months after start, even without close follow-up. In addition, we report that, after the 6 month observation period, two thirds of the patients in the high-carbohydrate changed their diet. This group also showed improvement in bodyweight and glycemic control. METHOD: Retrospective follow-up of previously studied subjects on a low carbohydrate diet. RESULTS: The mean bodyweight at the start of the initial study was 100.6 ± 14.7 kg. At six months it was 89.2 ± 14.3 kg. From 6 to 22 months, mean bodyweight had increased by 2.7 ± 4.2 kg to an average of 92.0 ± 14.0 kg. Seven of the 16 patients (44%) retained the same bodyweight from 6 to 22 months or reduced it further; all but one had lower weight at 22 months than at the beginning. Initial mean HbA1c was 8.0 ± 1.5 %. After 6 and 12 months it was 6.6 ± 1.0 % and 7.0 ± 1.3 %, respectively. At 22 months, it was still 6.9 ± 1.1 %. CONCLUSION: Advice on a 20 % carbohydrate diet with some caloric restriction to obese patients with type 2 diabetes has lasting effect on bodyweight and glycemic control
Overfeeding Reduces Insulin Sensitivity and Increases Oxidative Stress, without Altering Markers of Mitochondrial Content and Function in Humans
BACKGROUND: Mitochondrial dysfunction and increased oxidative stress are associated with obesity and type 2 diabetes. High fat feeding induces insulin resistance and increases skeletal muscle oxidative stress in rodents, but there is controversy as to whether skeletal muscle mitochondrial biogenesis and function is altered. METHODOLOGY AND PRINCIPAL FINDINGS: Forty (37±2 y) non-obese (25.6±0.6 kg/m2) sedentary men (n = 20) and women (n = 20) were overfed (+1040±100 kcal/day, 46±1% of energy from fat) for 28 days. Hyperinsulinemic-euglycemic clamps were performed at baseline and day 28 of overfeeding and skeletal muscle biopsies taken at baseline, day 3 and day 28 of overfeeding in a sub cohort of 26 individuals (13 men and 13 women) that consented to having all 3 biopsies performed. Weight increased on average in the whole cohort by 0.6±0.1 and 2.7±0.3 kg at days 3 and 28, respectively (P<0.0001, without a significant difference in the response between men and women (P = 0.4). Glucose infusion rate during the hyperinsulinemic-euglycemic clamp decreased from 54.8±2.8 at baseline to 50.3±2.5 mmol/min/kg FFM at day 28 of overfeeding (P = 0.03) without a significant difference between men and women (P = 0.4). Skeletal muscle protein carbonyls and urinary F2-isoprostanes increased with overfeeding (P,<.05). Protein levels of muscle peroxisome proliferator-activated receptor gamma coactivator-1a (PGC1a) and subunits from complex I, II and V of the electron transport chain were increased at day 3 (all P<0.05) and returned to basal levels at day 28. No changes were detected in muscle citrate synthase activity or ex vivo CO2 production at either time point. CONCLUSIONS: Peripheral insulin resistance was induced by overfeeding, without reducing any of the markers of mitochondrial content that were examined. Oxidative stress was however increased, and may have contributed to the reduction in insulin sensitivity observed.Dorit Samocha-Bonet, Lesley V. Campbell, Trevor A. Mori, Kevin D. Croft, Jerry R. Greenfield, Nigel Turner and Leonie K. Heilbron
The role of vitamin D in pulmonary disease: COPD, asthma, infection, and cancer
The role of vitamin D (VitD) in calcium and bone homeostasis is well described. In the last years, it has been recognized that in addition to this classical function, VitD modulates a variety of processes and regulatory systems including host defense, inflammation, immunity, and repair. VitD deficiency appears to be frequent in industrialized countries. Especially patients with lung diseases have often low VitD serum levels. Epidemiological data indicate that low levels of serum VitD is associated with impaired pulmonary function, increased incidence of inflammatory, infectious or neoplastic diseases. Several lung diseases, all inflammatory in nature, may be related to activities of VitD including asthma, COPD and cancer. The exact mechanisms underlying these data are unknown, however, VitD appears to impact on the function of inflammatory and structural cells, including dendritic cells, lymphocytes, monocytes, and epithelial cells. This review summarizes the knowledge on the classical and newly discovered functions of VitD, the molecular and cellular mechanism of action and the available data on the relationship between lung disease and VitD status
Patient-derived xenograft (PDX) models in basic and translational breast cancer research
Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research
Neuroscience of apathy and anhedonia: a transdiagnostic approach
Apathy and anhedonia are common syndromes of motivation that are associated with a wide range of brain disorders and have no established therapies. Research using animal models suggests that a useful framework for understanding motivated behaviour lies in effort-based decision making for reward. The neurobiological mechanisms underpinning such decisions have now begun to be determined in individuals with apathy or anhedonia, providing an important foundation for developing new treatments. The findings suggest that there might be some shared mechanisms between both syndromes. A transdiagnostic approach that cuts across traditional disease boundaries provides a potentially useful means for understanding these conditions
Reduced body sizes in climate-impacted tropical insect assemblages are primarily explained by range shifts
Both community composition changes due to species redistribution and within-species size shifts may alter body size structures under climate warming. Here we assess the relative contribution of these processes in community-level body size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages (>8000 individuals) on Mt. Kinabalu, Borneo in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size re-structuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming
Clarity of task difficulty moderates the impact of the explicit achievement motive on physical effort in hand grip tasks
Stable personality dispositions, like motives, are often assumed to exert a direct, stable impact on behavior. This also applies to the explicit achievement motive, which is supposed to influence the behavior that individuals select and how strongly they engage in it. Drawing on motivational intensity theory, we demonstrated in two studies that explicit achievement motive strength only predicted exerted force in a hand grip task if task difficulty was unclear. If task difficulty was clear, explicit achievement motive strength did not influence exerted force. Our findings suggest that the availability of information about the difficulty of motive satisfaction moderates the impact of the explicit achievement motive on behavior
- …
