15 research outputs found
Long survival of primary diffuse leptomeningeal gliomatosis following radiotherapy and temozolomide: case report and literature review
<p>Abstract</p> <p>Objective</p> <p>Primary diffuse leptomeningeal gliomatosis (PDLG) is a rare neoplasm with a short survival time of a few months. there is currently no standardized therapeutic approach for PDLG.</p> <p>Materials and methods</p> <p>We report on a 53-year-old male patient who presented with epileptic seizures, gait disturbance, paraparesis and sensory deficits in the dermatomes T8-10.</p> <p>Results</p> <p>Magnetic resonance imaging (MRI) revealing numerous spinal and cranial gadolinium-enhancing nodules in the meninges and histopathology led us to diagnose primary diffuse leptomeningeal gliomatosis with WHO grade III astrocytic cells. Consecutively, the patient underwent craniospinal radiotherapy (30 Gy) and 11 sequential cycles of temozolomide. This regimen led to partial tumor regression. Thirteen months later, spinal MRI revealed tumor progression. Second-line chemotherapy with 5 cycles of irinotecan and bevacizumab did not prevent further clinical deterioration. The patient died twenty-two months after diagnosis, being the longest survival time described thus far with respect to PDLG consisting of astrocytic tumor cells.</p> <p>Conclusions</p> <p>Radiochemotherapy including temozolomide, as established standard therapy for brain malignant astrocytomas, might be valid as a basic therapeutic strategy for this PDLG subtype.</p
A computational procedure for functional characterization of potential marker genes from molecular data: Alzheimer's as a case study
Abstract Background A molecular characterization of Alzheimer's Disease (AD) is the key to the identification of altered gene sets that lead to AD progression. We rely on the assumption that candidate marker genes for a given disease belong to specific pathogenic pathways, and we aim at unveiling those pathways stable across tissues, treatments and measurement systems. In this context, we analyzed three heterogeneous datasets, two microarray gene expression sets and one protein abundance set, applying a recently proposed feature selection method based on regularization. Results For each dataset we identified a signature that was successively evaluated both from the computational and functional characterization viewpoints, estimating the classification error and retrieving the most relevant biological knowledge from different repositories. Each signature includes genes already known to be related to AD and genes that are likely to be involved in the pathogenesis or in the disease progression. The integrated analysis revealed a meaningful overlap at the functional level. Conclusions The identification of three gene signatures showing a relevant overlap of pathways and ontologies, increases the likelihood of finding potential marker genes for AD.</p
NF1 mutations in conjunctival melanoma
Background
Conjunctival melanoma is a potentially deadly eye tumour. Despite effective local therapies, tumour recurrence and metastasis remain frequent. The genetics of conjunctival melanomas remain incompletely understood.
Methods
A large cohort of 63 conjunctival melanomas was screened for gene mutations known to be important in other melanoma subtypes by targeted next-generation sequencing. Mutation status was correlated with patient prognosis.
Results
Frequent mutations in genes activating the MAP kinase pathway were identified. NF1 mutations were most frequent (n = 21, 33%). Recurrent activating mutations were also identified in BRAF (n = 16, 25%) and RAS genes (n = 12, 19%; 11 NRAS and 1 KRAS).
Conclusions
Similar to cutaneous melanomas, conjunctival melanomas can be grouped genetically into four groups: BRAF-mutated, RAS-mutated, NF1-mutated and triple wild-type melanomas. This genetic classification may be useful for assessment of therapeutic options for patients with metastatic conjunctival melanom