305 research outputs found

    Parity Doubling and SU(2)_L x SU(2)_R Restoration in the Hadron Spectrum

    Full text link
    We construct the most general nonlinear representation of chiral SU(2)_L x SU(2)_R broken down spontaneously to the isospin SU(2), on a pair of hadrons of same spin and isospin and opposite parity. We show that any such representation is equivalent, through a hadron field transformation, to two irreducible representations on two hadrons of opposite parity with different masses and axial couplings. This implies that chiral symmetry realized in the Nambu-Goldstone mode does not predict the existence of degenerate multiplets of hadrons of opposite parity nor any relations between their couplings or masses.Comment: 4 pages, 1 figure; v3: Note added to clarify implications for hadrons that do not couple to pions: Chiral symmetry can be realized linearly on such states, leading to parity doubling. To the extent that they are parity doubled, these hadrons must decouple from pions, a striking prediction that can be tested experimentally. This applies to the work of L. Glozman and collaborator

    Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis

    Get PDF
    Cutaneous leishmaniasis (CL) is an infectious, parasitic disease caused by the protozoan Leishmania. Amphotericin B (AMB) is a macrolide polyene antibiotic presenting potent antifungal and antileishmanial activity, but due to poor water solubility at physiological pH, side effects, and toxicity, its therapeutic efficiency is limited. In the present study, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with AMB were generated to reduce drug toxicity and facilitate localized delivery over a prolonged time. AMB NPs were characterized for particle size, zeta potential, polydispersity index, and degree of aggregation. In vitro assessments demonstrated its sustained activity against Leishmania major promastigotes and parasite-infected macrophages. A single intralesional administration to infected BALB/c mice revealed that AMB NPs were more effective than AMB deoxycholate in terms of reducing lesion area. Taken together, these findings suggest thatAMB NPs improve AMB delivery and can be used for local treatment of CL.This research was funded by the GIP program of the Deutsche Forschungsgemeinschaft (DFG) German Research Foundation. EZ wish to acknowledge the financial support of the RBNI-The Russell Berrie Nanotechnology Institute at the Technion. CLJ holds the Michael and Penny Feiwel Chair of Dermatology

    Determinants and prognostic implications of Cardiac Troponin T measured by a sensitive assay in Type 2 Diabetes Mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cardiac troponins are biomarkers used for diagnosis of myocardial injury. They are also powerful prognostic markers in many diseases and settings. Recently introduced high-sensitivity assays indicate that chronic cardiac troponin elevations are common in response to cardiovascular (CV) morbidity. Type 2 diabetes mellitus (T2DM) confers a high risk of CV disease, but little is known about chronic cardiac troponin elevations in diabetic subjects. Accordingly, we aimed to understand the prevalence, determinants, and prognostic implications of cardiac troponin T (cTnT) elevations measured with a high-sensitivity assay in patients with T2DM.</p> <p>Methods</p> <p>cTnT was measured in stored, frozen serum samples from 124 subjects enrolled in the Asker and Bærum Cardiovascular Diabetes trial at baseline and at 2-year follow-up, if availabe (96 samples available). Results were analyzed in relation to baseline variables, hospitalizations, and group assignment (multifactorial intensive versus conventional diabetes care for lowering CV risk).</p> <p>Results</p> <p>One-hundred thirteen (90 %) had detectable cTnT at baseline and of those, 22 (18 % of the total population) subjects had values above the 99th percentile for healthy controls (13.5 ng/L). Levels at baseline were associated with conventional CV risk factors (age, renal function, gender). There was a strong correlation between cTnT levels at the two time-points (r = 0.92, p > 0.001). Risk for hospitalizations during follow-up increased step-wise by quartiles of hscTnT measured at baseline (p = 0.058).</p> <p>Conclusions</p> <p>Elevations of cTnT above the 99th percentile measured by a highly sensitive assay were encountered frequently in a population of T2DM patients. cTnT levels appeared to be stable over time and associated with conventional CV risk factors. Although a clear trend was present, no statistically robust associations with adverse outcomes could be found.</p

    Power Counting in the Soft-Collinear Effective Theory

    Full text link
    We describe in some detail the derivation of a power counting formula for the soft-collinear effective theory (SCET). This formula constrains which operators are required to correctly describe the infrared at any order in the Lambda_QCD/Q expansion (lambda expansion). The result assigns a unique lambda-dimension to graphs in SCET solely from vertices, is gauge independent, and can be applied independent of the process. For processes with an OPE the lambda-dimension has a correspondence with dynamical twist.Comment: 12 pages, 1 fig, journal versio

    The Influence of Foreign vs North American Emissions on Surface Ozone in the US

    Get PDF
    As part of the Hemispheric Transport of Air Pollution (HTAP; www.htap.org) project, we analyze results from 16 global and hemispheric chemical transport models and compare these to Clean Air Status and Trends Network (CASTNet) observations in the United States (US) for 2001. Using the policy-relevant maximum daily 8-h ozone (MDA8 O3) statistic, the multi-model ensemble represents the observations well (mean r2=0.57, ensemble bias=+4.1 ppbv for all regions and all seasons) despite a wide range in the individual model results. Correlations are strongest in the NorthEastern US during spring and fall (r2=0.68); and weakest in the Midwestern US in summer (r2=0.46). However, large positive mean biases exist during summer for all Eastern US regions, ranging from 10¿20 ppbv, and a smaller negative bias is present in the Western US during spring (3 ppbv). In most all other regions and seasons, the biases of the model ensemble simulations are 5 ppbv. Sensitivity simulations in which anthropogenic O3-precursor emissions (NOx+NMVOC+CO+aerosols) were decreased by 20% in each of four source regions: East Asia (EA), South Asia (SA), Europe (EU) and North America (NA) show that the greatest response of MDA8 O3 to the summed foreign emissions reductions occurs during spring in the West (0.9 ppbv reduction due to 20% reductions from EA+SA+EU). East Asia is the largest contributor to MDA8 O3 at all ranges of the O3 distribution for most regions (typically 0.45 ppbv). The exception is in the NorthEastern US where European emissions reductions had the greatest impact on MDA8 O3, particularly in the middle of the MDA8 O3 distribution (response of 0.35 ppbv between 35¿55 ppbv). In all regions and seasons, however, O3-precursor emissions reductions of 20% in the NA source region decrease MDA8 O3 the most by a factor of 2 to nearly 10 relative to foreign emissions reductions. The O3 response to anthropogenic NA emissions is greatest in the Eastern US during summer at the high end of the O3 distribution (5-6 ppbv for 20% reductions). While the impact of foreign emissions on surface O3 in the US is not negligible and is of increasing concern given the growth in emissions upwind of the US - domestic emissions reductions remain a farmore effective means of decreasing MDA8 O3 values, particularly those above 75 ppb(the current US standard).JRC.H.2-Air and Climat

    A stable aberrant immunophenotype characterizes nearly all cases of cutaneous T-cell lymphoma in blood and can be used to monitor response to therapy

    Get PDF
    BACKGROUND: Abnormal variations in the expression level of some commonly expressed T-cell antigens are a feature of many T-cell malignancies. METHODS: We sought to assess the frequency of such abnormal antigen expression by flow cytometry in peripheral blood (PB) samples from patients with mycosis fungoides (MF) and Sézary syndrome (SS). We correlated presence of morphologically identifiable tumor cells on PB smear with the frequency of abnormalities in the level of expression of CD3, CD4, CD7, CD8 and CD26. We also examined the degree of stability of these abnormal findings in tumor cells over the course of disease. The flow cytometric findings in 100 PB samples from 44 patients, including 38 who had multiple sequential PB samples (2–8 samples each), were assessed. RESULTS: Abnormalities were seen in the expression level of one or more T-cell markers in 41 cases (93%) including CD3 in 34% of patients, CD4 in 54%, CD26 in 86% and CD 45 in 40% (10 cases tested). In all but 2 cases, the abnormal T-cell immunophenotype remained similar over the course of treatment and correlated with the relative numbers of tumor cells counted on PB smear. CONCLUSIONS: Using a standard T-cell panel, stable phenotypically aberrant T-cell populations representing the tumor are detected in the vast majority of involved PB samples in MF/SS and can be used to monitor response to therapy

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Cdc42 and RhoA reveal different spatio-temporal dynamics upon local stimulation with Semaphorin-3A

    Get PDF
    Small RhoGTPases, such as Cdc42 and RhoA, are key players in integrating external cues and intracellular signaling pathways that regulate growth cone (GC) motility. Indeed, Cdc42 is involved in actin polymerization and filopodia formation, whereas RhoA induces GC collapse and neurite retraction through actomyosin contraction. In this study we employed F\uf6rster Resonance Energy Transfer (FRET) microscopy to study the spatio-temporal dynamics of Cdc42 and RhoA in GCs in response to local Semaphorin-3A (Sema3A) stimulation obtained with lipid vesicles filled with Sema3A and positioned near the selected GC using optical tweezers. We found that Cdc42 and RhoA were activated at the leading edge of NG108-15 neuroblastoma cells during spontaneous cycles of protrusion and retraction, respectively. The release of Sema3A brought to a progressive activation of RhoA within 30 s from the stimulus in the central region of the GC that collapsed and retracted. In contrast, the same stimulation evoked waves of Cdc42 activation propagating away from the stimulated region. A more localized stimulation obtained with Sema3A coated beads placed on the GC, led to Cdc42 active waves that propagated in a retrograde manner with a mean period of 70 s, and followed by GC retraction. Therefore, Sema3A activates both Cdc42 and RhoA with a complex and different spatial-temporal dynamics
    • …
    corecore