2,005 research outputs found

    Classical quarks in dual electromagnetic fields

    Full text link
    Electromagnetic properties of quark-like particles are examined in a classical field model involving extended dual electromagnetic fields. These can have fractional charges and a confining potential that derives essentially completely from a short-range weaker potential. The combined potentials exhibit an asymptotically free spherical surface and contribute to the masses of the particles. The quarks are shown to have an intrinsic symmetry that describes their structures in hadrons. Multi- quark solutions are easily obtained for both stable and unstable particles. Each quark can undergo simple harmonic motion in a range of frequencies

    1D model for the dynamics and expansion of elongated Bose-Einstein condensates

    Full text link
    We present a 1D effective model for the evolution of a cigar-shaped Bose-Einstein condensate in time dependent potentials whose radial component is harmonic. We apply this model to investigate the dynamics and expansion of condensates in 1D optical lattices, by comparing our predictions with recent experimental data and theoretical results. We also discuss negative-mass effects which could be probed during the expansion of a condensate moving in an optical lattice.Comment: RevTeX4, 8 pages, 10 figures, extended and revised versio

    Output from Bose condensates in tunnel arrays: the role of mean-field interactions and of transverse confinement

    Full text link
    We present numerical studies of atomic transport in 3D and 1D models for a mode-locked, pulsed atom laser as realized by Anderson and Kasevich [Science 281 (1998) 1686] using an elongated Bose condensate of 87{}^{87}Rb atoms poured into a vertical optical lattice. From our 3D results we ascertain in a quantitative manner the role of mean-field interactions in determining the shape and the size of the pulses in the case of Gaussian transverse confinement. By comparison with 1D simulations we single out a best-performing 1D reduction of the mean-field interactions, which yields quantitatively useful predictions for all main features of the matter output.Comment: 12 pages, 2 figure

    Proteorhodopsin overproduction enhances the long-term viability of Escherichia coli

    Get PDF
    Genes encoding the photoreactive protein proteorhodopsin (PR) have been found in a wide range of marine bacterial species, reflecting the significant contribution that PR makes to energy flux and carbon cycling in ocean ecosystems. PR can also confer advantages to enhance the ability of marine bacteria to survive periods of starvation. Here, we investigate the effect of heterologously produced PR on the viability of Escherichia coli. Quantitative mass spectrometry shows that E. coli, exogenously supplied with the retinal cofactor, assembles as many as 187,000 holo-PR molecules per cell, accounting for approximately 47% of the membrane area; even cells with no retinal synthesize ∌148,000 apo-PR molecules per cell. We show that populations of E. coli cells containing PR exhibit significantly extended viability over many weeks, and we use single-cell Raman spectroscopy (SCRS) to detect holo-PR in 9-month-old cells. SCRS shows that such cells, even incubated in the dark and therefore with inactive PR, maintain cellular levels of DNA and RNA and avoid deterioration of the cytoplasmic membrane, a likely basis for extended viability. The substantial proportion of the E. coli membrane required to accommodate high levels of PR likely fosters extensive intermolecular contacts, suggested to physically stabilize the cell membrane and impart a long-term benefit manifested as extended viability in the dark. We propose that marine bacteria could benefit similarly from a high PR content, with a stabilized cell membrane extending survival when those bacteria experience periods of severe nutrient or light limitation in the oceans

    Chiral Perturbation Theory and Nucleon Polarizabilities

    Get PDF
    Compton scattering offers in principle an intriguing new window on nucleon structure. Existing experiments and future programs are discussed and the state of theoretical understanding of such measurements is explored.Comment: 15 page standard Latex file---invited talk at Chiral Dynamics Workshop, Mainz, Germany---typos correcte

    Molecular structures and vibrations of neutral and anionic CuOx (x = 1-3,6) clusters

    Full text link
    We report equilibrium geometric structures of CuO2, CuO3, CuO6, and CuO clusters obtained by an all-electron linear combination of atomic orbitals scheme within the density-functional theory with generalized gradient approximation to describe the exchange-correlation effects. The vibrational stability of all clusters is examined on the basis of the vibrational frequencies. A structure with Cs symmetry is found to be the lowest-energy structure for CuO2, while a -shaped structure with C2v symmetry is the most stable structure for CuO3. For the larger CuO6 and CuO clusters, several competitive structures exist with structures containing ozonide units being higher in energy than those with O2 units. The infrared and Raman spectra are calculated for the stable optimal geometries. ~Comment: Uses Revtex4, (Better quality figures can be obtained from authors

    Explicit finite-difference and direct-simulation-MonteCarlo method for the dynamics of mixed Bose-condensate and cold-atom clouds

    Full text link
    We present a new numerical method for studying the dynamics of quantum fluids composed of a Bose-Einstein condensate and a cloud of bosonic or fermionic atoms in a mean-field approximation. It combines an explicit time-marching algorithm, previously developed for Bose-Einstein condensates in a harmonic or optical-lattice potential, with a particle-in-cell MonteCarlo approach to the equation of motion for the one-body Wigner distribution function in the cold-atom cloud. The method is tested against known analytical results on the free expansion of a fermion cloud from a cylindrical harmonic trap and is validated by examining how the expansion of the fermionic cloud is affected by the simultaneous expansion of a condensate. We then present wholly original calculations on a condensate and a thermal cloud inside a harmonic well and a superposed optical lattice, by addressing the free expansion of the two components and their oscillations under an applied harmonic force. These results are discussed in the light of relevant theories and experiments.Comment: 33 pages, 13 figures, 1 tabl

    Bogoliubov sound speed in periodically modulated Bose-Einstein condensates

    Full text link
    We study the Bogoliubov excitations of a Bose-condensed gas in an optical lattice. Of primary interest is the long wavelength phonon dispersion for both current-free and current-carrying condensates. We obtain the dispersion relation by carrying out a systematic expansion of the Bogoliubov equations in powers of the phonon wave vector. Our result for the current-carrying case agrees with the one recently obtained by means of a hydrodynamic theory.Comment: 16 pages, no figure

    A Nonlinear Force-Free Magnetic Field Approximation Suitable for Fast Forward-Fitting to Coronal Loops. I. Theory

    Full text link
    We derive an analytical approximation of nonlinear force-free magnetic field solutions (NLFFF) that can efficiently be used for fast forward-fitting to solar magnetic data, constrained either by observed line-of-sight magnetograms and stereoscopically triangulated coronal loops, or by 3D vector-magnetograph data. The derived NLFFF solutions provide the magnetic field components Bx(x)B_x({\bf x}), By(x)B_y({\bf x}), Bz(x)B_z({\bf x}), the force-free parameter α(x)\alpha({\bf x}), the electric current density j(x){\bf j}({\bf x}), and are accurate to second-order (of the nonlinear force-free α\alpha-parameter). The explicit expressions of a force-free field can easily be applied to modeling or forward-fitting of many coronal phenomena.Comment: Solar Physics (in press), 26 pages, 11 figure
    • 

    corecore