325 research outputs found

    Innovative placement allocation model for pre-registration student nurses

    Get PDF
    Student nurses require a variety of high quality practice placements to prepare them for registration with the Nursing and Midwifery Council (NMC) yet in reality this can be difficult to achieve. This case study reports on the development and implementation of a Practice Placement Allocation Model that has provided one University in the north west of England and its partner practice placement healthcare organisations with a framework to shift from a traditional, process-led pre-registration nursing student placement allocation system (adult field) to a robust, proactive, student-focused approach. The model is based upon practice placement allocation partnership concepts and these include advanced planning of student placements and clear lines of communication between all stakeholders involved in the practice placement of students. Application of the model has resulted in the sharing of timely information across organisations via a central framework and this has allowed for any underlying practice allocation problems to be quickly identified and resolved. Importantly, each practice partner now fully understands the role that they play and how to communicate more effectively. Challenges and opportunities are presented together with the evidence of how the model can be transferred to other healthcare professions and fields of nursing. 5 key points: 1. The government is insistent on producing and maintain a nursing workforce that provides quality and compassionate nursing care 2. The nursing students’ practice placement is a key component of an effective pre-registration nurse education programme 3. Ensuring that all nursing students have the variety of placements can be a challenge to providers of pre-registration nurse education 4. Practice placements should be mapped and allocated according to the students education programme requirements and individual needs 5. Application of a Practice Placement Allocation Model provides the best platform for the effective placement of nursing students and promotes partnership working between stakeholder

    Binding of smoothelin-like 1 to tropomyosin and calmodulin is mutually exclusive and regulated by phosphorylation

    Get PDF
    BACKGROUND: The smoothelin-like 1 protein (SMTNL1) can associate with tropomyosin (Tpm) and calmodulin (CaM), two proteins essential to the smooth muscle contractile process. SMTNL1 is phosphorylated at Ser301 by protein kinase A during calcium desensitization in smooth muscle, yet the effect of SMTNL1 phosphorylation on Tpm- and CaM-binding has yet to be investigated. RESULTS: Using pull down studies with Tpm-Sepharose and CaM-Sepharose, we examined the interplay between Tpm binding, CaM binding, phosphorylation of SMTNL1 and calcium concentration. Phosphorylation greatly enhanced the ability of SMTNL1 to associate with Tpm in vitro; surface plasmon resonance yielded a 10-fold enhancement in K (D) value with phosphorylation. The effect on CaM binding is more complex and varies with the availability of calcium. CONCLUSIONS: Combining both CaM and Tpm with SMTNL1 shows that the binding to both is mutually exclusive. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12858-017-0080-6) contains supplementary material, which is available to authorized users

    Physical activity as a treatment for depression: the TREAD randomised trial protocol

    Get PDF
    Depression is one of the most common reasons for consulting a General Practitioner (GP) within the UK. Whilst antidepressants have been shown to be clinically effective, many patients and healthcare professionals would like to access other forms of treatment as an alternative or adjunct to drug therapy for depression. A recent systematic review presented some evidence that physical activity could offer one such option, although further investigation is needed to test its effectiveness within the context of the National Health Service.The aim of this paper is to describe the protocol for a randomised, controlled trial (RCT) designed to evaluate an intervention developed to increase physical activity as a treatment for depression within primary care

    Climate Change and the Potential Distribution of an Invasive Shrub, Lantana camara L

    Get PDF
    The threat posed by invasive species, in particular weeds, to biodiversity may be exacerbated by climate change. Lantana camara L. (lantana) is a woody shrub that is highly invasive in many countries of the world. It has a profound economic and environmental impact worldwide, including Australia. Knowledge of the likely potential distribution of this invasive species under current and future climate will be useful in planning better strategies to manage the invasion. A process-oriented niche model of L. camara was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. The model was calibrated using data from several knowledge domains, including phenological observations and geographic distribution records. The potential distribution of lantana under historical climate exceeded the current distribution in some areas of the world, notably Africa and Asia. Under future scenarios, the climatically suitable areas for L. camara globally were projected to contract. However, some areas were identified in North Africa, Europe and Australia that may become climatically suitable under future climates. In South Africa and China, its potential distribution could expand further inland. These results can inform strategic planning by biosecurity agencies, identifying areas to target for eradication or containment. Distribution maps of risk of potential invasion can be useful tools in public awareness campaigns, especially in countries that have been identified as becoming climatically suitable for L. camara under the future climate scenarios

    Correlating corneal arcus with atherosclerosis in familial hypercholesterolemia

    Get PDF
    Abstract Background A relationship between corneal arcus and atherosclerosis has long been suspected but is controversial. The homozygous familial hypercholesterolemia patients in this study present a unique opportunity to assess this issue. They have both advanced atherosclerosis and corneal arcus. Methods This is a cross-sectional study of 17 patients homozygous for familial hypercholesterolemia presenting to the Clinical Center of the National Institutes of Health. Plasma lipoproteins, circumferential extent of arcus, thoracic aorta and coronary calcific atherosclerosis score, and Achilles tendon width were measured at the National Institutes of Health. Results Patients with corneal arcus had higher scores for calcific atherosclerosis (mean 2865 compared to 412), cholesterol-year score (mean 11830 mg-yr/dl compared to 5707 mg-yr/dl), and Achilles tendon width (mean 2.54 cm compared to 1.41 cm) than those without. Corneal arcus and Achilles tendon width were strongly correlated and predictive of each other. Although corneal arcus was correlated with calcific atherosclerosis (r = 0.67; p = 0.004), it was not as highly correlated as was the Achilles tendon width (r = 0.855; p Conclusion Corneal arcus reflects widespread tissue lipid deposition and is correlated with both calcific atherosclerosis and xanthomatosis in these patients. Patients with more severe arcus tend to have more severe calcific atherosclerosis. Corneal arcus is not as good an indicator of calcific atherosclerosis as Achilles tendon thickness, but its presence suggests increased atherosclerosis in these hypercholesterolemic patients.</p

    Assessing the effectiveness of Enhanced Psychological Care for patients with depressive symptoms attending cardiac rehabilitation compared with treatment as usual (CADENCE): A pilot cluster randomised controlled trial

    Get PDF
    © 2018 The Author(s). Background: Around 17% of people attending UK cardiac rehabilitation programmes have depression. Optimising psychological wellbeing is a rehabilitation goal, but provision of psychological care is limited. We developed and piloted an Enhanced Psychological Care (EPC) intervention embedded within cardiac rehabilitation, aiming to test key areas of uncertainty to inform the design of a definitive randomised controlled trial (RCT) and economic evaluation. Methods: An external pilot randomised controlled trial (RCT) randomised eight cardiac rehabilitation teams (clusters) to either usual care of cardiac rehabilitation provision (UC), or EPC in addition to UC. EPC comprised mental health care coordination and patient-led behavioural activation with nurse support. Adults eligible for cardiac rehabilitation following an acute coronary syndrome and identified with new-onset depressive symptoms during an initial nurse assessment were eligible. Measures were performed at baseline and 5- and 8-month follow-ups and compared between EPC and UC. Team and participant recruitment and retention rates, and participant outcomes (clinical events, depression, anxiety, health-related quality of life, patient experiences, and resource use) were assessed. Results: Eight out of twenty teams were recruited and randomised. Of 614 patients screened, 55 were eligible and 29 took part (5%, 95% CI 3 to 7% of those screened), with 15 patient participants cluster randomised to EPC and 14 to UC. Nurse records revealed that 8/15 participants received the maximum number of EPC sessions offered; and 4/15 received no sessions. Seven out of fifteen EPC participants were referred to another NHS psychological service compared to none in UC. We followed up 27/29 participants at 5 months and 17/21 at 8 months. The mean difference (EPC minus UC) in depressive symptoms (Beck Depression Inventory) at follow-up (adjusting for baseline score) was 1.7 (95% CI - 3.8 to 7.3; N = 26) at 5 months and 4.4 (95% CI - 1.4 to 10.2; N = 17) at 8 months. Discussion: While valued by patients and nurses, organisational and workload constraints are significant barriers to EPC implementation. There remains a need to develop and test new models of psychological care within cardiac rehabilitation. Our study offers important data to inform the design of future trials of similar interventions

    Floral odors and the interaction between pollinating Ceratopogonid midges and Cacao

    Get PDF
    Most plant species depend upon insect pollination services, including many cash and subsistence crops. Plants compete to attract those insects using visual cues and floral odor which pollinators associate with a reward. The cacao tree, Theobroma cacao, has a highly specialized floral morphology permitting pollination primarily by Ceratopogonid midges. However, these insects do not depend upon cacao flowers for their life cycle, and can use other sugar sources. To understand how floral cues mediate pollination in cacao we developed a method for rearing Ceratopogonidae through several complete lifecycles to provide material for bioassays. We carried out collection and analysis of cacao floral volatiles, and identified a bouquet made up exclusively of saturated and unsaturated, straight-chain hydrocarbons, which is unusual among floral odors. The most abundant components were tridecane, pentadecane, (Z)-7-pentadecene and (Z)-8-heptadecene with a heptadecadiene and heptadecatriene as minor components. We presented adult midges, Forcipomyia sp. (subgen. Forcipomyia), Culicoides paraensis and Dasyhelea borgmeieri, with natural and synthetic cacao flower odors in choice assays. Midges showed weak attraction to the complete natural floral odor in the assay, with no significant evidence of interspecific differences. This suggests that cacao floral volatiles play a role in pollinator behavior. Midges were not attracted to a synthetic blend of the above four major components of cacao flower odor, indicating that a more complete blend is required for attraction. Our findings indicate that cacao pollination is likely facilitated by the volatile blend released by flowers, and that the system involves a generalized odor response common to different species of Ceratopogonidae

    Integrated Proteomic and Metabolomic Analysis of an Artificial Microbial Community for Two-Step Production of Vitamin C

    Get PDF
    An artificial microbial community consisted of Ketogulonicigenium vulgare and Bacillus megaterium has been used in industry to produce 2-keto-gulonic acid (2-KGA), the precursor of vitamin C. During the mix culture fermentation process, sporulation and cell lysis of B. megaterium can be observed. In order to investigate how these phenomena correlate with 2-KGA production, and to explore how two species interact with each other during the fermentation process, an integrated time-series proteomic and metabolomic analysis was applied to the system. The study quantitatively identified approximate 100 metabolites and 258 proteins. Principal Component Analysis of all the metabolites identified showed that glutamic acid, 5-oxo-proline, L-sorbose, 2-KGA, 2, 6-dipicolinic acid and tyrosine were potential biomarkers to distinguish the different time-series samples. Interestingly, most of these metabolites were closely correlated with the sporulation process of B. megaterium. Together with several sporulation-relevant proteins identified, the results pointed to the possibility that Bacillus sporulation process might be important part of the microbial interaction. After sporulation, cell lysis of B. megaterium was observed in the co-culture system. The proteomic results showed that proteins combating against intracellular reactive oxygen stress (ROS), and proteins involved in pentose phosphate pathway, L-sorbose pathway, tricarboxylic acid cycle and amino acids metabolism were up-regulated when the cell lysis of B. megaterium occurred. The cell lysis might supply purine substrates needed for K. vulgare growth. These discoveries showed B. megaterium provided key elements necessary for K. vulgare to grow better and produce more 2-KGA. The study represents the first attempt to decipher 2-KGA-producing microbial communities using quantitative systems biology analysis

    Modularization of biochemical networks based on classification of Petri net t-invariants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.</p> <p>With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system.</p> <p>Methods</p> <p>Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied.</p> <p>Results</p> <p>We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in <it>Saccharomyces cerevisiae</it>) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability.</p> <p>Conclusion</p> <p>We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.</p

    Altered Metabolism and Persistent Starvation Behaviors Caused by Reduced AMPK Function in Drosophila

    Get PDF
    Organisms must utilize multiple mechanisms to maintain energetic homeostasis in the face of limited nutrient availability. One mechanism involves activation of the heterotrimeric AMP-activated protein kinase (AMPK), a cell-autonomous sensor to energetic changes regulated by ATP to AMP ratios. We examined the phenotypic consequences of reduced AMPK function, both through RNAi knockdown of the gamma subunit (AMPKγ) and through expression of a dominant negative alpha (AMPKα) variant in Drosophila melanogaster. Reduced AMPK signaling leads to hypersensitivity to starvation conditions as measured by lifespan and locomotor activity. Locomotor levels in flies with reduced AMPK function were lower during unstressed conditions, but starvation-induced hyperactivity, an adaptive response to encourage foraging, was significantly higher than in wild type. Unexpectedly, total dietary intake was greater in animals with reduced AMPK function yet total triglyceride levels were lower. AMPK mutant animals displayed starvation-like lipid accumulation patterns in metabolically key liver-like cells, oenocytes, even under fed conditions, consistent with a persistent starved state. Measurements of O2 consumption reveal that metabolic rates are greater in animals with reduced AMPK function. Lastly, rapamycin treatment tempers the starvation sensitivity and lethality associated with reduced AMPK function. Collectively, these results are consistent with models that AMPK shifts energy usage away from expenditures into a conservation mode during nutrient-limited conditions at a cellular level. The highly conserved AMPK subunits throughout the Metazoa, suggest such findings may provide significant insight for pharmaceutical strategies to manipulate AMPK function in humans
    • …
    corecore