1,063 research outputs found
Exploring the Use of Fruit Callus Culture as a Model System to Study Color Development and Cell Wall Remodeling during Strawberry Fruit Ripening
Cell cultures derived from strawberry fruit at different developmental stages have been obtained to evaluate their potential use to study different aspects of strawberry ripening. Callus from leaf and cortical tissue of unripe-green, white, and mature-red strawberry fruits were induced in a medium supplemented with 11.3 µM 2,4-dichlorophenoxyacetic acid (2,4-D) under darkness. The transfer of the established callus from darkness to light induced the production of anthocyanin. The replacement of 2,4-D by abscisic acid (ABA) noticeably increased anthocyanin accumulation in green-fruit callus. Cell walls were isolated from the different fruit cell lines and from fruit receptacles at equivalent developmental stages and sequentially fractionated to obtain fractions enriched in soluble pectins, ester bound pectins, xyloglucans (XG), and matrix glycans tightly associated with cellulose microfibrils. These fractions were analyzed by cell wall carbohydrate microarrays. In fruit receptacle samples, pectins were abundant in all fractions, including those enriched in matrix glycans. The amount of pectin increased from green to white stage, and later these carbohydrates were solubilized in red fruit. Apparently, XG content was similar in white and red fruit, but the proportion of galactosylated XG increased in red fruit. Cell wall fractions from callus cultures were enriched in extensin and displayed a minor amount of pectins. Stronger signals of extensin Abs were detected in sodium carbonate fraction, suggesting that these proteins could be linked to pectins. Overall, the results obtained suggest that fruit cell lines could be used to analyze hormonal regulation of color development in strawberry but that the cell wall remodeling process associated with fruit softening might be masked by the high presence of extensin in callus cultures
Identification of key parameters controlling demographically structured vegetation dynamics in a land surface model: CLM4.5(FATES)
Vegetation plays an important role in regulating global carbon cycles and is a key component of the Earth system models (ESMs) that aim to project Earth's future climate. In the last decade, the vegetation component within ESMs has witnessed great progress from simple "big-leaf" approaches to demographically structured approaches, which have a better representation of plant size, canopy structure, and disturbances. These demographically structured vegetation models typically have a large number of input parameters, and sensitivity analysis is needed to quantify the impact of each parameter on the model outputs for a better understanding of model behavior. In this study, we conducted a comprehensive sensitivity analysis to diagnose the Community Land Model coupled to the Functionally Assembled Terrestrial Simulator, or CLM4.5(FATES). Specifically, we quantified the first- and second-order sensitivities of the model parameters to outputs that represent simulated growth and mortality as well as carbon fluxes and stocks for a tropical site with an extent of 1×1°. While the photosynthetic capacity parameter (Vc;max25) is found to be important for simulated carbon stocks and fluxes, we also show the importance of carbon storage and allometry parameters, which determine survival and growth strategies within the model. The parameter sensitivity changes with different sizes of trees and climate conditions. The results of this study highlight the importance of understanding the dynamics of the next generation of demographically enabled vegetation models within ESMs to improve model parameterization and structure for better model fidelity
Temporal Stability and the Effects of Training on Saccade Latency in “Express Saccade Makers”
The temporal stability of saccade latency, and the effects of training, particularly in “express saccade makers” (ESMs), has received little attention. ESMs are healthy, naïve, adults, who persist in executing very many low latency “express saccades” (ES; saccades with latency of 80 ms to 130 ms), in conditions designed to suppress such responses. We investigated the stability of ES production (%ES) in 59 ESM and 54 non-ESM participants in overlap tasks. Within a single session, the intraclass correlation coefficient (ICC) for %ES in two runs of 200 trials was 0.97 (p30% of saccades over the two runs were ES, were classified as ESMs. For 60 participants tested over two sessions 12 weeks apart, and 30 participants tested in three sessions over approximately six months, the ICC for %ES was uniformly high (0.95, p<0.001 and 0.97, p<0.001 respectively) and participants behaved consistently with their initial classification. Fourteen participants (7 ESMs) were then exposed to training consisting of either gap or overlap tasks. Training increased %ES in both groups. However, when tested in overlap tasks, it was not sufficient to transform Normal participants into ESMs. We conclude that the pattern of saccade behaviour exhibited by ESMs constitutes a stable and distinct oculomotor phenotype
Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics
<b>Background</b><p></p>
The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.<p></p>
<b>Methodology/Principal findings</b><p></p>
Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.<p></p>
<b>Conclusions/significance</b><p></p>
Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi
PubChem3D: Similar conformers
<p>Abstract</p> <p>Background</p> <p>PubChem is a free and open public resource for the biological activities of small molecules. With many tens of millions of both chemical structures and biological test results, PubChem is a sizeable system with an uneven degree of available information. Some chemical structures in PubChem include a great deal of biological annotation, while others have little to none. To help users, PubChem pre-computes "neighboring" relationships to relate similar chemical structures, which may have similar biological function. In this work, we introduce a "Similar Conformers" neighboring relationship to identify compounds with similar 3-D shape and similar 3-D orientation of functional groups typically used to define pharmacophore features.</p> <p>Results</p> <p>The first two diverse 3-D conformers of 26.1 million PubChem Compound records were compared to each other, using a shape Tanimoto (ST) of 0.8 or greater and a color Tanimoto (CT) of 0.5 or greater, yielding 8.16 billion conformer neighbor pairs and 6.62 billion compound neighbor pairs, with an average of 253 "Similar Conformers" compound neighbors per compound. Comparing the 3-D neighboring relationship to the corresponding 2-D neighboring relationship ("Similar Compounds") for molecules such as caffeine, aspirin, and morphine, one finds unique sets of related chemical structures, providing additional significant biological annotation. The PubChem 3-D neighboring relationship is also shown to be able to group a set of non-steroidal anti-inflammatory drugs (NSAIDs), despite limited PubChem 2-D similarity.</p> <p>In a study of 4,218 chemical structures of biomedical interest, consisting of many known drugs, using more diverse conformers per compound results in more 3-D compound neighbors per compound; however, the overlap of the compound neighbor lists per conformer also increasingly resemble each other, being 38% identical at three conformers and 68% at ten conformers. Perhaps surprising is that the average count of conformer neighbors per conformer increases rather slowly as a function of diverse conformers considered, with only a 70% increase for a ten times growth in conformers per compound (a 68-fold increase in the conformer pairs considered).</p> <p>Neighboring 3-D conformers on the scale performed, if implemented naively, is an intractable problem using a modest sized compute cluster. Methodology developed in this work relies on a series of filters to prevent performing 3-D superposition optimization, when it can be determined that two conformers cannot possibly be a neighbor. Most filters are based on Tanimoto equation volume constraints, avoiding incompatible conformers; however, others consider preliminary superposition between conformers using reference shapes.</p> <p>Conclusion</p> <p>The "Similar Conformers" 3-D neighboring relationship locates similar small molecules of biological interest that may go unnoticed when using traditional 2-D chemical structure graph-based methods, making it complementary to such methodologies. The computational cost of 3-D similarity methodology on a wide scale, such as PubChem contents, is a considerable issue to overcome. Using a series of efficient filters, an effective throughput rate of more than 150,000 conformers per second per processor core was achieved, more than two orders of magnitude faster than without filtering.</p
The population of close double white dwarfs in the Galaxy
We present a new model for the Galactic population of close double white
dwarfs. The model accounts for the suggestion of the avoidance of a substantial
spiral-in during mass transfer between a giant and a main-sequence star of
comparable mass and for detailed cooling models. It agrees well with the
observations of the local sample of white dwarfs if the initial binary fraction
is close to 50% and an ad hoc assumption is made that white dwarfs with mass
less than about 0.3 solar mass cool faster than the models suggest. About 1000
white dwarfs brighter than V=15 have to be surveyed for detection of a pair
which has total mass greater than the Chandrasekhar mass and will merge within
10 Gyr.Comment: 15 pages, 7 figures, to appear in Proc. ``The influence of binaries
on stellar population studies'', Brussels, August 2000 (Kluwer, D. Vanbeveren
ed.
Rhodopsin Mutant P23H Destabilizes Rod Photoreceptor Disk Membranes
Mutations in rhodopsin cause retinitis pigmentosa in humans and retinal degeneration in a multitude of other animals. We utilized high-resolution live imaging of the large rod photoreceptors from transgenic frogs (Xenopus) to compare the properties of fluorescently tagged rhodopsin, Rho-EGFP, and RhoP23H-EGFP. The mutant was abnormally distributed both in the inner and outer segments (OS), accumulating in the OS to a concentration of ∼0.1% compared to endogenous opsin. RhoP23H-EGFP formed dense fluorescent foci, with concentrations of mutant protein up to ten times higher than other regions. Wild-type transgenic Rho-EGFP did not concentrate in OS foci when co-expressed in the same rod with RhoP23H-EGFP. Outer segment regions containing fluorescent foci were refractory to fluorescence recovery after photobleaching, while foci in the inner segment exhibited recovery kinetics similar to OS regions without foci and Rho-EGFP. The RhoP23H-EGFP foci were often in older, more distal OS disks. Electron micrographs of OS revealed abnormal disk membranes, with the regular disk bilayers broken into vesiculotubular structures. Furthermore, we observed similar OS disturbances in transgenic mice expressing RhoP23H, suggesting such structures are a general consequence of mutant expression. Together these results show that mutant opsin disrupts OS disks, destabilizing the outer segment possibly via the formation of aggregates. This may render rods susceptible to mechanical injury or compromise OS function, contributing to photoreceptor loss
- …