544 research outputs found
Lectures on Spectrum Generating Symmetries and U-duality in Supergravity, Extremal Black Holes, Quantum Attractors and Harmonic Superspace
We review the underlying algebraic structures of supergravity theories with
symmetric scalar manifolds in five and four dimensions, orbits of their
extremal black hole solutions and the spectrum generating extensions of their
U-duality groups. For 5D, N=2 Maxwell-Einstein supergravity theories (MESGT)
defined by Euclidean Jordan algebras, J, the spectrum generating symmetry
groups are the conformal groups Conf(J) of J which are isomorphic to their
U-duality groups in four dimensions. Similarly, the spectrum generating
symmetry groups of 4D, N=2 MESGTs are the quasiconformal groups QConf(J)
associated with J that are isomorphic to their U-duality groups in three
dimensions. We then review the work on spectrum generating symmetries of
spherically symmetric stationary 4D BPS black holes, based on the equivalence
of their attractor equations and the equations for geodesic motion of a
fiducial particle on the target spaces of corresponding 3D supergravity
theories obtained by timelike reduction. We also discuss the connection between
harmonic superspace formulation of 4D, N=2 sigma models coupled to supergravity
and the minimal unitary representations of their isometry groups obtained by
quantizing their quasiconformal realizations. We discuss the relevance of this
connection to spectrum generating symmetries and conclude with a brief summary
of more recent results.Comment: 55 pages; Latex fil
Tackling tuberculosis: insights from an international TB Summit in London
Tuberculosis (TB) poses a grave predicament to the world as it is not merely a scientific challenge but a socio-economic burden as well. A prime cause of mortality in human due to an infectious disease; the malady and its cause, Mycobacterium tuberculosis have remained an enigma with many questions that remain unanswered. The ability of the pathogen to survive and switch between varied physiological states necessitates a protracted therapeutic regimen that exerts an excessive strain on low-resource countries. To complicate things further, there has been a significant rise of antimicrobial resistance. Existing control measures, including treatment regimens have remained fairly uniform globally for at least half a century and require reinvention. Overcoming the societal and scientific challenges requires an increase in dialog to identify key regions that need attention and effective partners with whom successful collaborations can be fostered. In this report, we explore the discussions held at the International TB Summit 2015 hosted by EuroSciCon, which served as an excellent platform for researchers to share their recent findings. Ground-breaking results require outreach to affect policy design, governance and control of the disease. Hence, we feel it is important that meetings such as these reach a wider, global audience
Spacelike Singularities and Hidden Symmetries of Gravity
We review the intimate connection between (super-)gravity close to a
spacelike singularity (the "BKL-limit") and the theory of Lorentzian Kac-Moody
algebras. We show that in this limit the gravitational theory can be
reformulated in terms of billiard motion in a region of hyperbolic space,
revealing that the dynamics is completely determined by a (possibly infinite)
sequence of reflections, which are elements of a Lorentzian Coxeter group. Such
Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras,
suggesting that these algebras yield symmetries of gravitational theories. Our
presentation is aimed to be a self-contained and comprehensive treatment of the
subject, with all the relevant mathematical background material introduced and
explained in detail. We also review attempts at making the infinite-dimensional
symmetries manifest, through the construction of a geodesic sigma model based
on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case
of the hyperbolic algebra E10, which is conjectured to be an underlying
symmetry of M-theory. Illustrations of this conjecture are also discussed in
the context of cosmological solutions to eleven-dimensional supergravity.Comment: 228 pages. Typos corrected. References added. Subject index added.
Published versio
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
corrections to match published versio
Analyses of HIV-1 integrase sequences prior to South African national HIV-treatment program and available of integrase inhibitors in Cape Town, South Africa
HIV-Integrase (IN) has proven to be a viable target for highly specific HIV-1 therapy. We aimed to
characterize the HIV-1 IN gene in a South African context and identify resistance-associated mutations
(RAMs) against available first and second generation Integrase strand-transfer inhibitors (InSTIs). We
performed genetic analyses on 91 treatment-naïve HIV-1 infected patients, as well as 314 treatmentnaive
South African HIV-1 IN-sequences, downloaded from Los Alamos HIV Sequence Database.
Genotypic analyses revealed the absence of major RAMs in the cohort collected before the broad
availability of combination antiretroviral therapy (cART) and INSTI in South Africa, however, occurred
at a rate of 2.85% (9/314) in database derived sequences. RAMs were present at IN-positions 66, 92,
143, 147 and 148, all of which may confer resistance to Raltegravir (RAL) and Elvitegravir (EVG), but
are unlikely to affect second-generation Dolutegravir (DTG), except mutations in the Q148 pathway.
Furthermore, protein modeling showed, naturally occurring polymorphisms impact the stability of the
intasome-complex and therefore may contribute to an overall potency against InSTIs. Our data suggest
the prevalence of InSTI RAMs, against InSTIs, is low in South Africa, but natural polymorphisms and
subtype-specific differences may influence the effect of individual treatment regimens
A distinct role for B1b lymphocytes in T cell-independent immunity
Pathogenesis of infectious disease is not only determined by the virulence of the microbe but also by the immune status of the host. Vaccination is the most effective means to control infectious diseases. A hallmark of the adaptive immune system is the generation of B cell memory, which provides a long-lasting protective antibody response that is central to the concept of vaccination. Recent studies revealed a distinct function for B1b lymphocytes, a minor subset of mature B cells that closely resembles that of memory B cells in a number of aspects. In contrast to the development of conventional B cell memory, which requires the formation of germinal centers and T cells, the development of B1b cell-mediated long-lasting antibody responses occurs independent of T cell help. T cell-independent (TI) antigens are important virulence factors expressed by a number of bacterial pathogens, including those associated with biological threats. TI antigens cannot be processed and presented to T cells and therefore are known to possess restricted T cell-dependent (TD) immunogenicity. Nevertheless, specific recognition of TI antigens by B1b cells and the highly protective antibody responses mounted by them clearly indicate a crucial role for this subset of B cells. Understanding the mechanisms of long-term immunity conferred by B1b cells may lead to improved vaccine efficacy for a variety of TI antigens
Transitional Cell Carcinoma in a Remnant Ureter after Retroperitoneoscopic Simple Nephrectomy for Benign Renal Disease
A 70-yr-old man presented with painless gross hematuria. He underwent right nephrectomy for benign disease 9 yr ago. Computed tomography and cystoscopy showed a mass in the distal region of the right ureteral stump. He underwent right ureterectomy and bladder cuff resection. Pathological examination showed T1 and WHO grade 2 transitional cell carcinoma. At 6 months postoperatively, the patient is alive without any evidence of recurrence
Expert consensus document: A 'diamond' approach to personalized treatment of angina.
In clinical guidelines, drugs for symptomatic angina are classified as being first choice (β-blockers, calcium-channel blockers, short-acting nitrates) or second choice (ivabradine, nicorandil, ranolazine, trimetazidine), with the recommendation to reserve second-choice medications for patients who have contraindications to first-choice agents, do not tolerate them, or remain symptomatic. No direct comparisons between first-choice and second-choice treatments have demonstrated the superiority of one group of drugs over the other. Meta-analyses show that all antianginal drugs have similar efficacy in reducing symptoms, but provide no evidence for improvement in survival. The newer, second-choice drugs have more evidence-based clinical data that are more contemporary than is available for traditional first-choice drugs. Considering some drugs, but not others, to be first choice is, therefore, difficult. Moreover, double or triple therapy is often needed to control angina. Patients with angina can have several comorbidities, and symptoms can result from various underlying pathophysiologies. Some agents, in addition to having antianginal effects, have properties that could be useful depending on the comorbidities present and the mechanisms of angina, but the guidelines do not provide recommendations on the optimal combinations of drugs. In this Consensus Statement, we propose an individualized approach to angina treatment, which takes into consideration the patient, their comorbidities, and the underlying mechanism of disease
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
AAV Exploits Subcellular Stress Associated with Inflammation, Endoplasmic Reticulum Expansion, and Misfolded Proteins in Models of Cystic Fibrosis
Barriers to infection act at multiple levels to prevent viruses, bacteria, and parasites from commandeering host cells for their own purposes. An intriguing hypothesis is that if a cell experiences stress, such as that elicited by inflammation, endoplasmic reticulum (ER) expansion, or misfolded proteins, then subcellular barriers will be less effective at preventing viral infection. Here we have used models of cystic fibrosis (CF) to test whether subcellular stress increases susceptibility to adeno-associated virus (AAV) infection. In human airway epithelium cultured at an air/liquid interface, physiological conditions of subcellular stress and ER expansion were mimicked using supernatant from mucopurulent material derived from CF lungs. Using this inflammatory stimulus to recapitulate stress found in diseased airways, we demonstrated that AAV infection was significantly enhanced. Since over 90% of CF cases are associated with a misfolded variant of Cystic Fibrosis Transmembrane Conductance Regulator (ΔF508-CFTR), we then explored whether the presence of misfolded proteins could independently increase susceptibility to AAV infection. In these models, AAV was an order of magnitude more efficient at transducing cells expressing ΔF508-CFTR than in cells expressing wild-type CFTR. Rescue of misfolded ΔF508-CFTR under low temperature conditions restored viral transduction efficiency to that demonstrated in controls, suggesting effects related to protein misfolding were responsible for increasing susceptibility to infection. By testing other CFTR mutants, G551D, D572N, and 1410X, we have shown this phenomenon is common to other misfolded proteins and not related to loss of CFTR activity. The presence of misfolded proteins did not affect cell surface attachment of virus or influence expression levels from promoter transgene cassettes in plasmid transfection studies, indicating exploitation occurs at the level of virion trafficking or processing. Thus, we surmised that factors enlisted to process misfolded proteins such as ΔF508-CFTR in the secretory pathway also act to restrict viral infection. In line with this hypothesis, we found that AAV trafficked to the microtubule organizing center and localized near Golgi/ER transport proteins. Moreover, AAV infection efficiency could be modulated with siRNA-mediated knockdown of proteins involved in processing ΔF508-CFTR or sorting retrograde cargo from the Golgi and ER (calnexin, KDEL-R, β-COP, and PSMB3). In summary, our data support a model where AAV exploits a compromised secretory system and, importantly, underscore the gravity with which a stressed subcellular environment, under internal or external insults, can impact infection efficiency
- …
