113 research outputs found

    Reconstructing ‘the Alcoholic’: Recovering from Alcohol Addiction and the Stigma this Entails

    Get PDF
    Public perception of alcohol addiction is frequently negative, whilst an important part of recovery is the construction of a positive sense of self. In order to explore how this might be achieved, we investigated how those who self-identify as in recovery from alcohol problems view themselves and their difficulties with alcohol and how they make sense of others’ responses to their addiction. Semi-structured interviews with six individuals who had been in recovery between 5 and 35 years and in contact with Alcoholics Anonymous were analysed using Interpretative Phenomenological Analysis. The participants were acutely aware of stigmatising images of ‘alcoholics’ and described having struggled with a considerable dilemma in accepting this identity themselves. However, to some extent they were able to resist stigma by conceiving of an ‘aware alcoholic self’ which was divorced from their previously unaware self and formed the basis for a new more knowing and valued identity

    Intestinal Microbiota Shifts towards Elevated Commensal Escherichia coli Loads Abrogate Colonization Resistance against Campylobacter jejuni in Mice

    Get PDF
    Background: The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. Methodology/Principal Findings: Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. Conclusion/Significance: Murine colonization resistance against C. jejuni is abrogated by changes in the microbiot

    Impact of Dietary Gluten on Regulatory T Cells and Th17 Cells in BALB/c Mice

    Get PDF
    Dietary gluten influences the development of type 1 diabetes (T1D) and a gluten-free (GF) diet has a protective effect on the development of T1D. Gluten may influence T1D due to its direct effect on intestinal immunity; however, these mechanisms have not been adequately studied. We studied the effect of a GF diet compared to a gluten-containing standard (STD) diet on selected T cell subsets, associated with regulatory functions as well as proinflammatory Th17 cells, in BALB/c mice. Furthermore, we assessed diet-induced changes in the expression of various T cell markers, and determined if changes were confined to intestinal or non-intestinal lymphoid compartments. The gluten-containing STD diet led to a significantly decreased proportion of γδ T cells in all lymphoid compartments studied, although an increase was detected in some γδ T cell subsets (CD8+, CD103+). Further, it decreased the proportion of CD4+CD62L+ T cells in Peyer's patches. Interestingly, no diet-induced changes were found among CD4+Foxp3+ T cells or CD3+CD49b+cells (NKT cells) and CD3−CD49b+ (NK) cells. Mice fed the STD diet showed increased proportions of CD4+CD45RBhigh+ and CD103+ T cells and a lower proportion of CD4+CD45RBlow+ T cells in both mucosal and non-mucosal compartments. The Th17 cell population, associated with the development of autoimmunity, was substantially increased in pancreatic lymph nodes of mice fed the STD diet. Collectively, our data indicate that dietary gluten influences multiple regulatory T cell subsets as well as Th17 cells in mucosal lymphoid tissue while fewer differences were observed in non-mucosal lymphoid compartments

    PADB : Published Association Database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although molecular pathway information and the International HapMap Project data can help biomedical researchers to investigate the aetiology of complex diseases more effectively, such information is missing or insufficient in current genetic association databases. In addition, only a few of the environmental risk factors are included as gene-environment interactions, and the risk measures of associations are not indexed in any association databases.</p> <p>Description</p> <p>We have developed a published association database (PADB; <url>http://www.medclue.com/padb</url>) that includes both the genetic associations and the environmental risk factors available in PubMed database. Each genetic risk factor is linked to a molecular pathway database and the HapMap database through human gene symbols identified in the abstracts. And the risk measures such as odds ratios or hazard ratios are extracted automatically from the abstracts when available. Thus, users can review the association data sorted by the risk measures, and genetic associations can be grouped by human genes or molecular pathways. The search results can also be saved to tab-delimited text files for further sorting or analysis. Currently, PADB indexes more than 1,500,000 PubMed abstracts that include 3442 human genes, 461 molecular pathways and about 190,000 risk measures ranging from 0.00001 to 4878.9.</p> <p>Conclusion</p> <p>PADB is a unique online database of published associations that will serve as a novel and powerful resource for reviewing and interpreting huge association data of complex human diseases.</p

    Co-occurrence of diabetes and hopelessness predicts adverse prognosis following percutaneous coronary intervention

    Get PDF
    We examined the impact of co-occurring diabetes and hopelessness on 3-year prognosis in percutaneous coronary intervention patients. Consecutive patients (n = 534) treated with the paclitaxel-eluting stent completed a set of questionnaires at baseline and were followed up for 3-year adverse clinical events. The incidence of 3-year death/non-fatal myocardial infarction was 3.5% in patients with no risk factors (neither hopelessness nor diabetes), 8.2% in patients with diabetes, 11.2% in patients with high hopelessness, and 15.9% in patients with both factors (p = 0.001). Patients with hopelessness (HR: 3.28; 95% CI: 1.49-7.23) and co-occurring diabetes and hopelessness (HR: 4.89; 95% CI: 1.86-12.85) were at increased risk of 3-year adverse clinical events compared to patients with no risk factors, whereas patients with diabetes were at a clinically relevant but not statistically significant risk (HR: 2.40; 95% CI: 0.82-7.01). These results remained, adjusting for baseline characteristics an

    NGF Is an Essential Survival Factor for Bronchial Epithelial Cells during Respiratory Syncytial Virus Infection

    Get PDF
    Background: Overall expression of neurotrophins in the respiratory tract is upregulated in infants infected by the respiratory syncytial virus (RSV), but it is unclear where (structural vs. inflammatory cells, upper vs. lower airways) and why, these changes occur. We analyzed systematically the expression of neurotrophic factors and receptors following RSV infection of human nasal, tracheal, and bronchial epithelial cells, and tested the hypothesis that neurotrophins work as innate survival factors for infected respiratory epithelia. Methodology: Expression of neurotrophic factors (nerve growth factor, NGF; brain-derived neurotrophic factor, BDNF) and receptors (trkA, trkB, p75) was analyzed at the protein level by immunofluorescence and flow cytometry and at the mRNA level by real-time PCR. Targeted siRNA was utilized to blunt NGF expression, and its effect on virus-induced apoptosis/ necrosis was evaluated by flow cytometry following annexin V/7-AAD staining. Principal Findings: RSV infection was more efficient in cells from more distal (bronchial) vs. more proximal origin. In bronchial cells, RSV infection induced transcript and protein overexpression of NGF and its high-affinity receptor trkA, with concomitant downregulation of the low-affinity p75 NTR. In contrast, tracheal cells exhibited an increase in BDNF, trkA and trkB, and nasal cells increased only trkA. RSV-infected bronchial cells transfected with NGF-specific siRNA exhibited decreased trkA and increased p75 NTR expression. Furthermore, the survival of bronchial epithelial cells was dramaticall

    Early and Late Pathogenic Events of Newborn Mice Encephalitis Experimentally Induced by Itacaiunas and Curionópolis Bracorhabdoviruses Infection

    Get PDF
    In previous reports we proposed a new genus for Rhabdoviridae and described neurotropic preference and gross neuropathology in newborn albino Swiss mice after Curionopolis and Itacaiunas infections. In the present report a time-course study of experimental encephalitis induced by Itacaiunas and Curionopolis virus was conducted both in vivo and in vitro to investigate cellular targets and the sequence of neuroinvasion. We also investigate, after intranasal inoculation, clinical signs, histopathology and apoptosis in correlation with viral immunolabeling at different time points. Curionopolis and Itacaiunas viral antigens were first detected in the parenchyma of olfactory pathways at 2 and 3 days post-inoculation (dpi) and the first clinical signs were observed at 4 and 8 dpi, respectively. After Curionopolis infection, the mortality rate was 100% between 5 and 6 dpi, and 35% between 8 and 15 dpi after Itacaiunas infection. We identified CNS mice cell types both in vivo and in vitro and the temporal sequence of neuroanatomical olfactory areas infected by Itacaiunas and Curionopolis virus. Distinct virulences were reflected in the neuropathological changes including TUNEL immunolabeling and cytopathic effects, more intense and precocious after intracerebral or in vitro inoculations of Curionopolis than after Itacaiunas virus. In vitro studies revealed neuronal but not astrocyte or microglial cytopathic effects at 2 dpi, with monolayer destruction occurring at 5 and 7 dpi with Curionopolis and Itacaiunas virus, respectively. Ultrastructural changes included virus budding associated with interstitial and perivascular edema, endothelial hypertrophy, a reduced and/or collapsed small vessel luminal area, thickening of the capillary basement membrane, and presence of phagocytosed apoptotic bodies. Glial cells with viral budding similar to oligodendrocytes were infected with Itacaiunas virus but not with Curionopolis virus. Thus, Curionopolis and Itacaiunas viruses share many pathological and clinical features present in other rhabdoviruses but distinct virulence and glial targets in newborn albino Swiss mice brain

    Integrating Genome-Wide Genetic Variations and Monocyte Expression Data Reveals Trans-Regulated Gene Modules in Humans

    Get PDF
    One major expectation from the transcriptome in humans is to characterize the biological basis of associations identified by genome-wide association studies. So far, few cis expression quantitative trait loci (eQTLs) have been reliably related to disease susceptibility. Trans-regulating mechanisms may play a more prominent role in disease susceptibility. We analyzed 12,808 genes detected in at least 5% of circulating monocyte samples from a population-based sample of 1,490 European unrelated subjects. We applied a method of extraction of expression patterns—independent component analysis—to identify sets of co-regulated genes. These patterns were then related to 675,350 SNPs to identify major trans-acting regulators. We detected three genomic regions significantly associated with co-regulated gene modules. Association of these loci with multiple expression traits was replicated in Cardiogenics, an independent study in which expression profiles of monocytes were available in 758 subjects. The locus 12q13 (lead SNP rs11171739), previously identified as a type 1 diabetes locus, was associated with a pattern including two cis eQTLs, RPS26 and SUOX, and 5 trans eQTLs, one of which (MADCAM1) is a potential candidate for mediating T1D susceptibility. The locus 12q24 (lead SNP rs653178), which has demonstrated extensive disease pleiotropy, including type 1 diabetes, hypertension, and celiac disease, was associated to a pattern strongly correlating to blood pressure level. The strongest trans eQTL in this pattern was CRIP1, a known marker of cellular proliferation in cancer. The locus 12q15 (lead SNP rs11177644) was associated with a pattern driven by two cis eQTLs, LYZ and YEATS4, and including 34 trans eQTLs, several of them tumor-related genes. This study shows that a method exploiting the structure of co-expressions among genes can help identify genomic regions involved in trans regulation of sets of genes and can provide clues for understanding the mechanisms linking genome-wide association loci to disease

    MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium

    Get PDF
    Leukocyte adhesion to brain endothelial cells, the blood-brain barrier main component, is a critical step in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). Leukocyte adhesion is mediated mainly by selectins, cell adhesion molecules and chemokines induced by pro-inflammatory cytokines such as TNFα and IFNγ, but the regulation of this process is not fully clear. This study investigated the regulation of firm leukocyte adhesion to human brain endothelium by two different brain endothelial microRNAs (miRs), miR-126 and miR-126*, that are downregulated by TNFα and IFNγ in a human brain endothelial cell line, hCMEC/D3. Using a leukocyte adhesion in vitro assay under shear forces mimicking blood flow, we observed that reduction of endothelial miR-126 and miR-126* enhanced firm monocyte and T cell adhesion to hCMEC/D3 cells, whereas their increased expression partially prevented THP1, Jurkat and primary MS patient-derived PBMC firm adhesion. Furthermore, we observed that miR-126* and miR-126 downregulation increased E-selectin and VCAM1, respectively, while miR-126 overexpression reduced VCAM1 and CCL2 expression by hCMEC/D3 cells, suggesting that these miRs regulate leukocyte adhesion by modulating the expression of adhesion-associated endothelial mRNA targets. Hence, human brain endothelial miR-126 and miR-126* could be used as a therapeutic tool to reduce leukocyte adhesion and thus reduce neuroinflammation
    corecore