78 research outputs found
Building International Business Theory: A Grounded Theory Approach
The field of international business (IB) is in need of more theory development (Morck & Yeung, 2007). As such, the main focus of our manuscript was to provide guidance on how to build IB specific theory using grounded theory (GT). Moreover, we contribute to future theory development by identifying areas within IB where GT can be applied and the type of research issues that can be addressed using this methodology. Finally, we make a noteworthy contribution by discussing some of GT’s caveats and limitations, particularly those relevant to IB. This effort is intended to spur further interest in the development of IB theory
Business Ethics: The Promise of Neuroscience
Recent advances in cognitive neuroscience research portend well for furthering understanding of many of the fundamental questions in the field of business ethics, both normative and empirical. This article provides an overview of neuroscience methodology and brain structures, and explores the areas in which neuroscience research has contributed findings of value to business ethics, as well as suggesting areas for future research. Neuroscience research is especially capable of providing insight into individual reactions to ethical issues, while also raising challenging normative questions about the nature of moral responsibility, autonomy, intent, and free will. This article also provides a brief summary of the papers included in this special issue, attesting to the richness of scholarly inquiry linking neuroscience and business ethics. We conclude that neuroscience offers considerable promise to the field of business ethics, but we caution against overpromise
Societal-level versus individual-level predictions of ethical behavior: a 48-society study of collectivism and individualism
Is the societal-level of analysis sufficient today to understand the values of those in the global workforce? Or are individual-level analyses more appropriate for assessing the influence of values on ethical behaviors across country workforces? Using multi-level analyses for a 48-society sample, we test the utility of both the societal-level and individual-level dimensions of collectivism and individualism values for predicting ethical behaviors of business professionals. Our values-based behavioral analysis indicates that values at the individual-level make a more significant contribution to explaining variance in ethical behaviors than do values at the societal-level. Implicitly, our findings question the soundness of using societal-level values measures. Implications for international business research are discussed
Increased food production and reduced water use through optimized crop distribution
Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology - such as irrigation or fertilizers - and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods
Priorities for synthesis research in ecology and environmental science
Synthesis research in ecology and environmental science improves understanding, advances theory, identifies research priorities, and supports management strategies by linking data, ideas, and tools. Accelerating environmental challenges increases the need to focus synthesis science on the most pressing questions. To leverage input from the broader research community, we convened a virtual workshop with participants from many countries and disciplines to examine how and where synthesis can address key questions and themes in ecology and environmental science in the coming decade. Seven priority research topics emerged: (1) diversity, equity, inclusion, and justice (DEIJ), (2) human and natural systems, (3) actionable and use-inspired science, (4) scale, (5) generality, (6) complexity and resilience, and (7) predictability. Additionally, two issues regarding the general practice of synthesis emerged: the need for increased participant diversity and inclusive research practices; and increased and improved data flow, access, and skill-building. These topics and practices provide a strategic vision for future synthesis in ecology and environmental science
Virtual Water as a Metric for Institutional Sustainability
Carbon and nitrogen footprints are increasingly common metrics used to consider the environmental impacts of activities and consumption by institutions; an institutional water footprint complements these assessments by providing a third metric: water use. This study calculated the water footprint of the University of Virginia (UVA) as a summation of direct water use and virtual water use. The latter was estimated using purchasing records for utilities, food, transportation, paper, research animals, and hospital purchases for calendar year 2014. The direct water use portion of the footprint was 1.7 million m3 water. The virtual water footprint was 15.2 million m3. The utilities sector is responsible for 46 percent of UVA's total water footprint, and food production 23 percent. The UVA Health System contributed 17 percent, and paper, transportation, and research animals each constituted less than 3 percent of the total footprint. The most water-intensive inputs were biofuels, hydroelectricity, and animal products. This water footprint assessment supports carbon and nitrogen footprint-reduction strategies, such as replacing coal with natural gas and reducing beef consumption. Water footprints also require explicitly considering the impacts of renewable energy sources, such as biofuels or hydropower. The water footprint of the University of Virginia provides an additional measure to address the environmental implications of the institution's resource demands and this approach is broadly applicable to other institutions
Recommended from our members
The Global Food-Energy-Water Nexus
Water availability is a major factor constraining humanity's ability to meet the future food and energy needs of a growing and increasingly affluent human population. Water plays an important role in the production of energy, including renewable energy sources and the extraction of unconventional fossil fuels that are expected to become important players in future energy security. The emergent competition for water between the food and energy systems is increasingly recognized in the concept of the “food-energy-water nexus.” The nexus between food and water is made even more complex by the globalization of agriculture and rapid growth in food trade, which results in a massive virtual transfer of water among regions and plays an important role in the food and water security of some regions. This review explores multiple components of the food-energy-water nexus and highlights possible approaches that could be used to meet food and energy security with the limited renewable water resources of the planet. Despite clear tensions inherent in meeting the growing and changing demand for food and energy in the 21st century, the inherent linkages among food, water, and energy systems can offer an opportunity for synergistic strategies aimed at resilient food, water, and energy security, such as the circular economy
- …