4,715 research outputs found
Recommended from our members
Clubroot (Plasmodiophora brassicae Woronin): an agricultural and biological challenge worldwide
Clubroot disease and the causal microbe Plasmodiophora brassicae offer abundant challenges to agriculturists and biological scientists. This microbe is well fitted for the environments which it inhabits. Plasmodiophora brassicae exists in soil as microscopic well protected resting spores and then grows actively and reproduces while shielded inside the roots of host plants. The pathogen is active outside the host for only short periods. Consequently, scientific studies are made challenging by the biological context of the host and pathogen and the technology required to investigate and understand that relationship. Controlling clubroot disease is a challenge for farmers, crop consultants and plant pathology practitioners because of the limited options which are available. Full symptom expression happens solely in members of the Brassicaceae family. Currently, only a few genes expressing strong resistance to P. brassicae are known and readily available. Agrochemical control is similarly limited by difficulties in molecule formulation which combines efficacy with environmental acceptability. Manipulation of husbandry encouraging improvements in soil structure, texture, nutrient composition and moisture content can reduce populations of P. brassicae. Integrating such strategies with rotation and crop management will reduce but not eliminate this disease. There are indications that forms of biological competition may be mobilised as additions to integrated control strategies. The aim of this review is to chart key themes in the development of scientific biological understanding of this host-pathogen relationship by offering signposts to grapple with clubroot disease which devastates crops and their profitability. Particular attention is given to the link between soil and nutrient chemistry and activity of this microbe
Exploring differential item functioning in the SF-36 by demographic, clinical, psychological and social factors in an osteoarthritis population
The SF-36 is a very commonly used generic measure of health outcome in osteoarthritis (OA). An important, but frequently overlooked, aspect of validating health outcome measures is to establish if items work in the same way across subgroup of a population. That is, if respondents have the same 'true' level of outcome, does the item give the same score in different subgroups or is it biased towards one subgroup or another. Differential item functioning (DIF) can identify items that may be biased for one group or another and has been applied to measuring patient reported outcomes. Items may show DIF for different conditions and between cultures, however the SF-36 has not been specifically examined in an osteoarthritis population nor in a UK population. Hence, the aim of the study was to apply the DIF method to the SF-36 for a UK OA population. The sample comprised a community sample of 763 people with OA who participated in the Somerset and Avon Survey of Health. The SF-36 was explored for DIF with respect to demographic, social, clinical and psychological factors. Well developed ordinal regression models were used to identify DIF items. Results: DIF items were found by age (6 items), employment status (6 items), social class (2 items), mood (2 items), hip v knee (2 items), social deprivation (1 item) and body mass index (1 item). Although the impact of the DIF items rarely had a significant effect on the conclusions of group comparisons, in most cases there was a significant change in effect size. Overall, the SF-36 performed well with only a small number of DIF items identified, a reassuring finding in view of the frequent use of the SF-36 in OA. Nevertheless, where DIF items were identified it would be advisable to analyse data taking account of DIF items, especially when age effects are the focus of interest
Computing Linear Matrix Representations of Helton-Vinnikov Curves
Helton and Vinnikov showed that every rigidly convex curve in the real plane
bounds a spectrahedron. This leads to the computational problem of explicitly
producing a symmetric (positive definite) linear determinantal representation
for a given curve. We study three approaches to this problem: an algebraic
approach via solving polynomial equations, a geometric approach via contact
curves, and an analytic approach via theta functions. These are explained,
compared, and tested experimentally for low degree instances.Comment: 19 pages, 3 figures, minor revisions; Mathematical Methods in
Systems, Optimization and Control, Birkhauser, Base
Four-Dimensional String/String Duality
We present supersymmetric soliton solutions of the four-dimensional heterotic
string corresponding to monopoles, strings and domain walls. These solutions
admit the interpretation of a fivebrane wrapped around , or
of the toroidally compactified dimensions and are arguably exact to all
orders in . The solitonic string solution exhibits an {\it
strong/weak coupling} duality which however corresponds to an {\it
target space} duality of the fundamental string.Comment: 14 page
BKM Lie superalgebra for the Z_5 orbifolded CHL string
We study the Z_5-orbifolding of the CHL string theory by explicitly
constructing the modular form tilde{Phi}_2 generating the degeneracies of the
1/4-BPS states in the theory. Since the additive seed for the sum form is a
weak Jacobi form in this case, a mismatch is found between the modular forms
generated from the additive lift and the product form derived from threshold
corrections. We also construct the BKM Lie superalgebra, tilde{G}_5,
corresponding to the modular form tilde{Delta}_1 (Z) = tilde{Phi}_2 (Z)^{1/2}
which happens to be a hyperbolic algebra. This is the first occurrence of a
hyperbolic BKM Lie superalgebra. We also study the walls of marginal stability
of this theory in detail, and extend the arithmetic structure found by Cheng
and Dabholkar for the N=1,2,3 orbifoldings to the N=4,5 and 6 models, all of
which have an infinite number of walls in the fundamental domain. We find that
analogous to the Stern-Brocot tree, which generated the intercepts of the walls
on the real line, the intercepts for the N >3 cases are generated by linear
recurrence relations. Using the correspondence between the walls of marginal
stability and the walls of the Weyl chamber of the corresponding BKM Lie
superalgebra, we propose the Cartan matrices for the BKM Lie superalgebras
corresponding to the N=5 and 6 models.Comment: 30 pages, 2 figure
Entropy flow in near-critical quantum circuits
Near-critical quantum circuits are ideal physical systems for asymptotically
large-scale quantum computers, because their low energy collective excitations
evolve reversibly, effectively isolated from the environment. The design of
reversible computers is constrained by the laws governing entropy flow within
the computer. In near-critical quantum circuits, entropy flows as a locally
conserved quantum current, obeying circuit laws analogous to the electric
circuit laws. The quantum entropy current is just the energy current divided by
the temperature. A quantum circuit made from a near-critical system (of
conventional type) is described by a relativistic 1+1 dimensional relativistic
quantum field theory on the circuit. The universal properties of the
energy-momentum tensor constrain the entropy flow characteristics of the
circuit components: the entropic conductivity of the quantum wires and the
entropic admittance of the quantum circuit junctions. For example,
near-critical quantum wires are always resistanceless inductors for entropy. A
universal formula is derived for the entropic conductivity:
\sigma_S(\omega)=iv^{2}S/\omega T, where \omega is the frequency, T the
temperature, S the equilibrium entropy density and v the velocity of `light'.
The thermal conductivity is Real(T\sigma_S(\omega))=\pi v^{2}S\delta(\omega).
The thermal Drude weight is, universally, v^{2}S. This gives a way to measure
the entropy density directly.Comment: 2005 paper published 2017 in Kadanoff memorial issue of J Stat Phys
with revisions for clarity following referee's suggestions, arguments and
results unchanged, cross-posting now to quant-ph, 27 page
Ethiopian agriculture has greater potential for carbon sequestration than previously estimated
More than half of the cultivation-induced carbon loss from agricultural soils could be restored through improved management. To incentivise carbon sequestration, the potential of improved practices needs to be verified. To date, there is sparse empirical evidence of carbon sequestration through improved practices in East-Africa. Here, we show that agroforestry and restrained grazing had a greater stock of soil carbon than their bordering pair-matched controls, but the difference was less obvious with terracing. The controls were treeless cultivated fields for agroforestry, on slopes not terraced for terracing, and permanent pasture for restrained grazing, representing traditionally managed agricultural practices dominant in the case regions. The gain by the improved management depended on the carbon stocks in the control plots. Agroforestry for 6-20 years led to 11.4 Mg ha(-1) and restrained grazing for 6-17 years to 9.6 Mg ha(-1) greater median soil carbon stock compared with the traditional management. The empirical estimates are higher than previous process-model-based estimates and indicate that Ethiopian agriculture has greater potential to sequester carbon in soil than previously estimated.Peer reviewe
Comparison and Mapping Facilitate Relation Discovery and Predication
Relational concepts play a central role in human perception and cognition, but little is known about how they are acquired. For example, how do we come to understand that physical force is a higher-order multiplicative relation between mass and acceleration, or that two circles are the same-shape in the same way that two squares are? A recent model of relational learning, DORA (Discovery of Relations by Analogy; Doumas, Hummel & Sandhofer, 2008), predicts that comparison and analogical mapping play a central role in the discovery and predication of novel higher-order relations. We report two experiments testing and confirming this prediction
Review of Economic Submissions to NICE Medical Technologies Evaluation Programme
The economic evaluation of medical devices is increasingly used to inform decision making on adopting new or novel technologies; however, challenges are inevitable due to the unique characteristics of devices. Cost-consequence analyses are recommended and employed by the English National Institute for Health and Care Excellence (NICE) Medical Technologies Evaluation Programme (MTEP) to help address these challenges. The aim of this work was to review the critiques raised for previous MTEP submissions and explore if there were common problems across submissions. We reviewed a sample of 12 economic submissions to MTEP representing 50 % of 24 sets of guidance issued to July 2015. For each submission, we reviewed the External Assessment Centre's (EAC) report and the guidance document produced by NICE. We identified the main problems raised by the EAC's assessments and the committee's considerations for each submission, and explored strategies for improvement. We found that the identification and measurement of costs and consequences are the main shortcomings within economic submissions to MTEP. Together, these shortcomings accounted for 42 % of criticisms by the EACs among the reviewed submissions. In certain circumstances problems with these shortcomings may be unavoidable, for example, if there is a limited evidence base for the device being appraised. Nevertheless, strategies can often be adopted to improve submissions, including the use of more appropriate time horizons, whilst cost and resource use information should be taken, where possible, from nationally representative sources
Direct observation of molecular cooperativity near the glass transition
We describe direct observations of molecular cooperativity near the glass
transition in poly-vinyl-acetate (PVAc), through nanometer-scale probing of
dielectric fluctuations. Molecular clusters switched spontaneously between two
to four distinct configurations, producing complex random-telegraph-signals
(RTS). Analysis of the RTS and their power spectra shows that individual
clusters exhibit both transient dynamical heterogeneity and non-exponential
kinetics.Comment: 14 pages pdf, need Acrobat Reade
- …
