Helton and Vinnikov showed that every rigidly convex curve in the real plane
bounds a spectrahedron. This leads to the computational problem of explicitly
producing a symmetric (positive definite) linear determinantal representation
for a given curve. We study three approaches to this problem: an algebraic
approach via solving polynomial equations, a geometric approach via contact
curves, and an analytic approach via theta functions. These are explained,
compared, and tested experimentally for low degree instances.Comment: 19 pages, 3 figures, minor revisions; Mathematical Methods in
Systems, Optimization and Control, Birkhauser, Base