246 research outputs found

    Identification of host proteins interacting with Toxoplasma gondii GRA15 (TgGRA15) by yeast two-hybrid system

    Get PDF
    Background Toxoplasma gondii, an obligate intracellular protozoan parasite, possesses the remarkable ability to co-opt host cell machinery in order to maintain its intracellular survival. This parasite can modulate signaling pathways of its host through the secretion of polymorphic effector proteins localized in the rhoptry and dense granule organelles. One of such effectors is T. gondii type II-specific dense granule protein 15, TgGRA15, which activates NF-κB pathway. The aim of the present study was to identify the host interaction partner proteins of TgGRA15. Methods We screened a yeast two-hybrid mouse cDNA library using TgGRA15 as the bait. TgGRA15 (PRU strain, Type II) was cloned into the pGBKT7 vector and expressed in the Y2HGold yeast strain. Then, the bait protein expression was validated by western blotting analysis, followed by auto-activation and toxicity tests in comparison with control (Y2HGold yeast strain transformed with empty pGBKT7 vector). Results This screening led to the identification of mouse Luzp1 and AW209491 as host binding proteins that interact with TgGRA15. Luzp1 contains three nuclear localizing signals and is involved in regulating a subset of host non-coding RNA genes. Conclusions These findings reveal, for the first time, new host cell proteins interacting with TgGRA15. The identification of these cellular targets and the understanding of their contribution to the host-pathogen interaction may serve as the foundation for novel therapeutic and prevention strategies against T. gondii infection

    Longitudinal plasma measures of trimethylamine N-Oxide and risk of atherosclerotic cardiovascular disease events in community-based older adults

    Get PDF
    Background Trimethylamine N‐oxide (TMAO) is a gut microbiota‐dependent metabolite of dietary choline, L‐carnitine, and phosphatidylcholine‐rich foods. On the basis of experimental studies and patients with prevalent disease, elevated plasma TMAO may increase risk of atherosclerotic cardiovascular disease (ASCVD). TMAO is also renally cleared and may interact with and causally contribute to renal dysfunction. Yet, how serial TMAO levels relate to incident and recurrent ASCVD in community‐based populations and the potential mediating or modifying role of renal function are not established. Methods and Results We investigated associations of serial measures of plasma TMAO, assessed at baseline and 7 years, with incident and recurrent ASCVD in a community‐based cohort of 4131 (incident) and 1449 (recurrent) older US adults. TMAO was measured using stable isotope dilution liquid chromatography–tandem mass spectrometry (laboratory coefficient of variation, <6%). Incident ASCVD (myocardial infarction, fatal coronary heart disease, stroke, sudden cardiac death, or other atherosclerotic death) was centrally adjudicated using medical records. Risk was assessed by multivariable Cox proportional hazards regression, including time‐varying demographics, lifestyle factors, medical history, laboratory measures, and dietary habits. Potential mediating effects and interaction by estimated glomerular filtration rate (eGFR) were assessed. During prospective follow‐up, 1766 incident and 897 recurrent ASCVD events occurred. After multivariable adjustment, higher levels of TMAO were associated with a higher risk of incident ASCVD, with extreme quintile hazard ratio (HR) compared with the lowest quintile=1.21 (95% CI, 1.02–1.42; P‐trend=0.029). This relationship appeared mediated or confounded by eGFR (eGFR‐adjusted HR, 1.07; 95% CI, 0.90–1.27), as well as modified by eGFR (P‐interaction <0.001). High levels of TMAO were associated with higher incidence of ASCVD in the presence of impaired renal function (eGFR <60 mL/min per 1.73 m2: HR, 1.56 [95% CI, 1.13–2.14]; P‐trend=0.007), but not normal or mildly reduced renal function (eGFR ≥60 mL/min per 1.73 m2: HR, 1.03 [95% CI, 0.85–1.25]; P‐trend=0.668). Among individuals with prior ASCVD, TMAO associated with higher risk of recurrent ASCVD (HR, 1.25 [95% CI, 1.01–1.56]; P‐trend=0.009), without significant modification by eGFR. Conclusions In this large community‐based cohort of older US adults, serial measures of TMAO were associated with higher risk of incident ASCVD, with apparent modification by presence of impaired renal function and with higher risk of recurrent ASCVD

    An Abundant Dysfunctional Apolipoprotein A1 in Human Atheroma

    Get PDF
    Recent studies have indicated that high-density lipoproteins (HDLs) and their major structural protein, apolipoprotein A1 (apoA1), recovered from human atheroma are dysfunctional and are extensively oxidized by myeloperoxidase (MPO). In vitro oxidation of either apoA1 or HDL particles by MPO impairs their cholesterol acceptor function. Here, using phage display affinity maturation, we developed a high-affinity monoclonal antibody that specifically recognizes both apoA1 and HDL that have been modified by the MPO-H2O2-Cl− system. An oxindolyl alanine (2-OH-Trp) moiety at Trp72 of apoA1 is the immunogenic epitope. Mutagenesis studies confirmed a critical role for apoA1 Trp72 in MPO-mediated inhibition of the ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol acceptor activity of apoA1 in vitro and in vivo. ApoA1 containing a 2-OH-Trp72 group (oxTrp72-apoA1) is in low abundance within the circulation but accounts for 20% of the apoA1 in atherosclerosis-laden arteries. OxTrp72-apoA1 recovered from human atheroma or plasma is lipid poor, virtually devoid of cholesterol acceptor activity and demonstrated both a potent proinflammatory activity on endothelial cells and an impaired HDL biogenesis activity in vivo. Elevated oxTrp72-apoA1 levels in subjects presenting to a cardiology clinic (n = 627) were associated with increased cardiovascular disease risk. Circulating oxTrp72-apoA1 levels may serve as a way to monitor a proatherogenic process in the artery wall

    Loss of Metal Ions, Disulfide Reduction and Mutations Related to Familial ALS Promote Formation of Amyloid-Like Aggregates from Superoxide Dismutase

    Get PDF
    Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1

    Protandim, a Fundamentally New Antioxidant Approach in Chemoprevention Using Mouse Two-Stage Skin Carcinogenesis as a Model

    Get PDF
    Oxidative stress is an important contributor to cancer development. Consistent with that, antioxidant enzymes have been demonstrated to suppress tumorigenesis when being elevated both in vitro and in vivo, making induction of these enzymes a more potent approach for cancer prevention. Protandim, a well-defined combination of widely studied medicinal plants, has been shown to induce superoxide dismutase (SOD) and catalase activities and reduce superoxide generation and lipid peroxidation in healthy human subjects. To investigate whether Protandim can suppress tumor formation by a dietary approach, a two-stage mouse skin carcinogenesis study was performed. At the end of the study, the mice on a Protandim-containing basal diet had similar body weight compared with those on the basal diet, which indicated no overt toxicity by Protandim. After three weeks on the diets, there was a significant increase in the expression levels of SOD and catalase, in addition to the increases in SOD activities. Importantly, at the end of the carcinogenesis study, both skin tumor incidence and multiplicity were reduced in the mice on the Protandim diet by 33% and 57% respectively, compared with those on basal diet. Biochemical and histological studies revealed that the Protandim diet suppressed tumor promoter-induced oxidative stress (evidenced by reduction of protein carbonyl levels), cell proliferation (evidenced by reduction of skin hyperplasia and suppression of PKC/JNK/Jun pathway), and inflammation (evidenced by reduction of ICAM-1/VCAM-1 expression, NF-κB binding activity, and nuclear p65/p50 levels). Overall, induction of antioxidant enzymes by Protandim may serve as a practical and potent approach for cancer prevention

    FSP27 Promotes Lipid Droplet Clustering and Then Fusion to Regulate Triglyceride Accumulation

    Get PDF
    Fat Specific Protein 27 (FSP27), a lipid droplet (LD) associated protein in adipocytes, regulates triglyceride (TG) storage. In the present study we demonstrate that FSP27 plays a key role in LD morphology to accumulate TGs. We show here that FSP27 promotes clustering of the LDs which is followed by their fusion into fewer and enlarged droplets. To map the domains of FSP27 responsible for these events, we generated GFP-fusion constructs of deletion mutants of FSP27. Microscopic analysis revealed that amino acids 173–220 of FSP27 are necessary and sufficient for both the targeting of FSP27 to LDs and the initial clustering of the droplets. Amino acids 120–140 are essential but not sufficient for LD enlargement, whereas amino acids 120–210 are necessary and sufficient for both clustering and fusion of LDs to form enlarged droplets. In addition, we found that FSP27-mediated enlargement of LDs, but not their clustering, is associated with triglyceride accumulation. These results suggest a model in which FSP27 facilitates LD clustering and then promotes their fusion to form enlarged droplets in two discrete, sequential steps, and a subsequent triglyceride accumulation

    Direct Observation of Defects and Increased Ion Permeability of a Membrane Induced by Structurally Disordered Cu/Zn-Superoxide Dismutase Aggregates

    Get PDF
    Interactions between protein aggregates and a cellular membrane have been strongly implicated in many protein conformational diseases. However, such interactions for the case of Cu/Zn superoxide dismutase (SOD1) protein, which is related to fatal neurodegenerative disorder amyotrophic lateral sclerosis (ALS), have not been explored yet. For the first time, we report the direct observation of defect formation and increased ion permeability of a membrane induced by SOD1 aggregates using a supported lipid bilayer and membrane patches of human embryonic kidney cells as model membranes. We observed that aggregated SOD1 significantly induced the formation of defects within lipid membranes and caused the perturbation of membrane permeability, based on surface plasmon resonance spectroscopy, atomic force microscopy and electrophysiology. In the case of apo SOD1 with an unfolded structure, we found that it bound to the lipid membrane surface and slightly perturbed membrane permeability, compared to other folded proteins (holo SOD1 and bovine serum albumin). The changes in membrane integrity and permeability were found to be strongly dependent on the type of proteins and the amount of aggregates present. We expect that the findings presented herein will advance our understanding of the pathway by which structurally disordered SOD1 aggregates exert toxicity in vivo

    The Receptor Tyrosine Kinase FGFR4 Negatively Regulates NF-kappaB Signaling

    Get PDF
    NFκB signaling is of paramount importance in the regulation of apoptosis, proliferation, and inflammatory responses during human development and homeostasis, as well as in many human cancers. Receptor Tyrosine Kinases (RTKs), including the Fibroblast Growth Factor Receptors (FGFRs) are also important in development and disease. However, a direct relationship between growth factor signaling pathways and NFκB activation has not been previously described, although FGFs have been known to antagonize TNFα-induced apoptosis. assays. FGF19 stimulation of endogenous FGFR4 in TNFα-treated DU145 prostate cancer cells also leads to a decrease in IKKβ activity, concomitant reduction in NFκB nuclear localization, and reduced apoptosis. Microarray analysis demonstrates that FGF19 + TNFα treatment of DU145 cells, in comparison with TNFα alone, favors proliferative genes while downregulating genes involved in apoptotic responses and NFκB signaling.These results identify a compelling link between FGFR4 signaling and the NFκB pathway, and reveal that FGFR4 activation leads to a negative effect on NFκB signaling including an inhibitory effect on proapoptotic signaling. We anticipate that this interaction between an RTK and a component of NFκB signaling will not be limited to FGFR4 alone
    corecore