224 research outputs found

    Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates

    Get PDF
    AbstractTwo major infectious forms of vaccinia virus (VACV) have been described: the intracellular mature virion (IMV), and the extracellular enveloped virion (EEV). Due to their stability in the environment, IMVs play a predominant role in host-to-host transmission, whereas EEVs play an important role in dissemination within the host. In a previous report, we demonstrated that mice vaccinated with VACV L1R (IMV immunogen) and A33R (EEV immunogen) were protected from a lethal poxvirus challenge. Vaccination with a combination of both genes conferred greater protection than either gene alone, suggesting that an immune response against both IMV and EEV is advantageous. Here, we report that in mice individually administered DNA vaccines with two different VACV immunogens, A27L (IMV immunogen) or B5R (EEV immunogen), failed to significantly protect; however, vaccination with a combination of both genes conferred a high level of protection. Mice were completely protected when vaccinated with a combination of four VACV genes (A27L + A33R + L1R + B5R). Rhesus macaques vaccinated with this four-gene-combination developed appropriate antibody responses to each protein. Antibody responses elicited by this vaccine cross-reacted with monkeypox virus orthologous proteins. These data indicate that a gene-based vaccine comprised of the VACV A27L + A33R + L1R + B5R genes may be a useful candidate to protect against other orthopoxviruses, including those that cause monkeypox and smallpox

    Application of the finite-temperature Lanczos method for the evaluation of magnetocaloric properties of large magnetic molecules

    Full text link
    We discuss the magnetocaloric properties of gadolinium containing magnetic molecules which potentially could be used for sub-Kelvin cooling. We show that a degeneracy of a singlet ground state could be advantageous in order to support adiabatic processes to low temperatures and simultaneously minimize disturbing dipolar interactions. Since the Hilbert spaces of such spin systems assume very large dimensions we evaluate the necessary thermodynamic observables by means of the Finite-Temperature Lanczos Method.Comment: 7 pages, 10 figures, invited for the special issue of EPJB on "New trends in magnetism and magnetic materials

    The functional role of biodiversity in ecosystems: incorporating trophic complexity

    Get PDF
    Understanding how biodiversity affects functioning of ecosystems requires integrating diversity within trophic levels (horizontal diversity) and across trophic levels (vertical diversity, including food chain length and omnivory). We review theoretical and experimental progress toward this goal. Generally, experiments show that biomass and resource use increase similarly with horizontal diversity of either producers or consumers. Among prey, higher diversity often increases resistance to predation, due to increased probability of including inedible species and reduced efficiency of specialist predators confronted with diverse prey. Among predators, changing diversity can cascade to affect plant biomass, but the strength and sign of this effect depend on the degree of omnivory and prey behaviour. Horizontal and vertical diversity also interact: adding a trophic level can qualitatively change diversity effects at adjacent levels. Multitrophic interactions produce a richer variety of diversity‐functioning relationships than the monotonic changes predicted for single trophic levels. This complexity depends on the degree of consumer dietary generalism, trade‐offs between competitive ability and resistance to predation, intraguild predation and openness to migration. Although complementarity and selection effects occur in both animals and plants, few studies have conclusively documented the mechanisms mediating diversity effects. Understanding how biodiversity affects functioning of complex ecosystems will benefit from integrating theory and experiments with simulations and network‐based approaches

    A complete 3D numerical study of the effects of pseudoscalar-photon mixing on quasar polarizations

    Full text link
    We present the results of three-dimensional simulations of quasar polarizations in the presence of pseudoscalar-photon mixing in the intergalactic medium. The intergalactic magnetic field is assumed to be uncorrelated in wave vector space but correlated in real space. Such a field may be obtained if its origin is primordial. Furthermore we assume that the quasars, located at cosmological distances, have negligible initial polarization. In the presence of pseudoscalar-photon mixing we show, through a direct comparison with observations, that this may explain the observed large scale alignments in quasar polarizations within the framework of big bang cosmology. We find that the simulation results give a reasonably good fit to the observed data.Comment: 15 pages, 8 figures, significant changes, to appear in EPJ

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity

    Continuing outcomes relevant to Evista:Breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of Raloxifene

    Get PDF

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    Reforming Watershed Restoration: Science in Need of Application and Applications in Need of Science

    Full text link

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
    • 

    corecore