1,066 research outputs found

    Space-time properties of the higher twist amplitudes

    Get PDF
    A consistent and intuitive description of the twist-4 corrections to the hadron structure functions is presented in a QCD-improved parton model using time-ordered perturbative theory, where the collinear singularities are naturally eliminated. We identify the special propagators with the backward propagators of partons in time order.Comment: 18 Pages, Latex, 8 Ps figures, To appear in Phys. Rev.

    A K-theory Anomaly Free Supersymmetric Flipped SU(5) Model from Intersecting Branes

    Get PDF
    We construct an N=1 supersymmetric three-family flipped SU(5) model from type IIA orientifolds on T6/(Z2×Z2)T^6/(\Z_2\times \Z_2) with D6-branes intersecting at general angles. The model is constrained by the requirement that Ramond-Ramond tadpoles cancel, the supersymmetry conditions, and that the gauge boson coupled to the U(1)XU(1)_X factor does not get a string-scale mass via a generalised Green-Schwarz mechanism. The model is further constrained by requiring cancellation of K-theory charges. The spectrum contains a complete grand unified and electroweak Higgs sector, however the latter in a non-minimal number of copies. In addition, it contains extra matter both in bi-fundamental and vector-like representations as well as two copies of matter in the symmetric representation of SU(5).Comment: 17 Pages, LaTe

    Strange vector currents and the OZI-rule

    Get PDF
    We investigate the role of correlated πρ\pi\rho exchange in the extraction of matrix elements of the strange vector current in the proton. We show that a realistic isoscalar spectral function including this effect leads to sizeably reduced strange vector form factors based on the dispersion--theoretical analysis of the nucleons' electromagnetic form factors.Comment: 8 pp, plain LaTeX, uses epsf, 3 figure

    Neutrino-Deuteron Scattering in Effective Field Theory at Next-to-Next-to Leading Order

    Get PDF
    We study the four channels associated with neutrino-deuteron breakup reactions at next-to-next to leading order in effective field theory. We find that the total cross-section is indeed converging for neutrino energies up to 20 MeV, and thus our calculations can provide constraints on theoretical uncertainties for the Sudbury Neutrino Observatory. We stress the importance of a direct experimental measurement to high precision in at least one channel, in order to fix an axial two-body counterterm.Comment: 32 pages, 14 figures (eps

    A Minimal Superstring Standard Model II: A Phenomenological Study

    Full text link
    Recently, we demonstrated the existence of heterotic--string solutions in which the observable sector effective field theory just below the string scale reduces to that of the MSSM, with the standard observable gauge group being just SU(3)_C x SU(2)_L x U(1)_Y and the SU(3)_C x SU(2)_L x U(1)_Y-charged spectrum of the observable sector consisting solely of the MSSM spectrum. Associated with this model is a set of distinct flat directions of vacuum expectation values (VEVs) of non-Abelian singlet fields that all produce solely the MSSM spectrum. In this paper, we study the effective superpotential induced by these choices of flat directions. We investigate whether sufficient degrees of freedom exist in these singlet flat directions to satisfy various phenomenological constraints imposed by the observed Standard Model data. For each flat direction, the effective superpotential is given to sixth order. The variations in the singlet and hidden sector low energy spectrums are analyzed. We then determine the mass matrices (to all finite orders) for the three generations of MSSM quarks and leptons. Possible Higgs mu-terms are investigated. We conclude by considering generalizations of our flat directions involving VEVs of non-Abelian fields.Comment: 41 pages. Standard Late

    Gauges and Cosmological Backreaction

    Full text link
    We present a formalism for spatial averaging in cosmology applicable to general spacetimes and coordinates, and allowing the easy incorporation of a wide variety of matter sources. We apply this formalism to a Friedmann-LeMaitre-Robertson-Walker universe perturbed to second-order and present the corrections to the background in an unfixed gauge. We then present the corrections that arise in uniform curvature and conformal Newtonian gauges.Comment: 13 pages. Updated: reference added, typos corrected, exposition clarified. Version 3: Replaced with version published by JCA

    Smash products for secondary homotopy groups

    Get PDF
    We construct a smash product operation on secondary homotopy groups yielding the structure of a lax symmetric monoidal functor. Applications on cup-one products, Toda brackets and Whitehead products are considered. In particular we prove a formula for the crossed effect of the cup-one product operation on unstable homotopy groups of spheres which was claimed by Barratt-Jones-Mahowald.Comment: We give a clearer description of the tensor product of symmetric sequences of quadratic pair module

    The Cosmic Microwave Background in an Inhomogeneous Universe - why void models of dark energy are only weakly constrained by the CMB

    Full text link
    The dimming of Type Ia supernovae could be the result of Hubble-scale inhomogeneity in the matter and spatial curvature, rather than signaling the presence of a dark energy component. A key challenge for such models is to fit the detailed spectrum of the cosmic microwave background (CMB). We present a detailed discussion of the small-scale CMB in an inhomogeneous universe, focusing on spherically symmetric `void' models. We allow for the dynamical effects of radiation while analyzing the problem, in contrast to other work which inadvertently fine tunes its spatial profile. This is a surprisingly important effect and we reach substantially different conclusions. Models which are open at CMB distances fit the CMB power spectrum without fine tuning; these models also fit the supernovae and local Hubble rate data which favours a high expansion rate. Asymptotically flat models may fit the CMB, but require some extra assumptions. We argue that a full treatment of the radiation in these models is necessary if we are to understand the correct constraints from the CMB, as well as other observations which rely on it, such as spectral distortions of the black body spectrum, the kinematic Sunyaev-Zeldovich effect or the Baryon Acoustic Oscillations.Comment: 23 pages with 14 figures. v2 has considerably extended discussion and analysis, but the basic results are unchanged. v3 is the final versio
    • 

    corecore