740 research outputs found

    The Impact of Ghrelin on the Survival and Efficacy of Dopaminergic Fetal Grafts in the 6-OHDA-Lesioned Rat

    Get PDF
    Ghrelin is a peptide produced in the gut with a wide range of physiological functions. Recent studies have suggested it may have potential as a neuroprotective agent in models of Parkinson’s disease, reducing the impact of toxic challenges on the survival of nigral dopaminergic neurons. The presence of the ghrelin receptor (GHSR1a) on the dopaminergic neurons of the substantia nigra raises the possibility that a potential application for this property of ghrelin may be as an adjunctive neuroprotective agent to enhance and support the survival and integration of dopaminergic cells transplanted into the striatum. Thus far, inconsistent outcomes in clinical trials for fetal cell transplantation have been linked to low rates of cell survival which we hypothesize could be ameliorated by the presence of ghrelin. To explore this, we confirmed the expression of the GHSR1a and related enzymes on e14 ventral mesencephalon. To determine a functional effect, five groups of female Sprague–Dawley rats received a unilateral 6-OHDA lesion to the medial forebrain bundle and four received an intrastriatal graft of e14 ventral mesencephalic cells. Grafted rats received saline; acyl-ghrelin (10 ”g/kg); acyl-ghrelin (50 ”g/kg) or the ghrelin agonist JMV-2894 (160 ”g/kg) i.p. for 8 weeks. An effect of ghrelin at low dose on hippocampal neurogenesis indicated blood–brain barrier penetrance and attainment of biologically relevant levels but neither acyl-ghrelin nor JMV-2894 improved graft survival or efficacy

    Momentum dependent quark mass in two-point correlators

    Full text link
    A momentum dependent quark mass may be incorporated into a quark model in a manner consistent with dynamically broken chiral symmetry. We use this to study the high Q2Q^2 behavior of the vector, axialvector, scalar and pseudoscalar two-point correlation functions. Expanding the results to order 1/Q61/Q^6, we show the correspondence between the dynamical quark mass and the vacuum condensates which appear in the operator product expansion of QCD. We recover the correct leading logarithmic Q2Q^2 dependence of the various terms in the OPE, but we also find substantial subleading corrections which are numerically huge in a specific case. We conclude by using the vector minus axialvector correlator to estimate the π+−π0\pi^+ - \pi^0 electromagnetic mass difference.Comment: 18 pages, LaTeX, figures in accompanying uuencoded postscript file. Published version. References adde

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS

    Design of a 3rd harmonic electron cyclotron emission diagnostic for ballooning mode fluctuations in PBX-M

    Get PDF
    A third harmonic electron cyclotron emission diagnostic using ultrawide bandwidth ( = 40 GHz) heterodyne receivers centered on 120 GHz with 14 channels per radial view is describecj for localized, long wavelength (5 % X s 50 cm), fast time response ( = 1 ps) fluctuation studies in the PBX-M tokamak. The optically gray emission signal will have a y ie/ne + (3/0)Te/Te dependence on temperature and density fluctuations where y S 1 and 1 _ P: 3 depending on local optical depth. Electron temperature fluctuation sensitivity is estimated to be 0.2 % se ' Te/Te s 2.9 % depending on local optical depth and fluctuation frequency in the 0.1-1 MHz range. Spatial resolution of approximately 3 cm radially and 5 cm vertically are estimated for 2 keV plasmas with low suprathermal electron emission

    DXA-derived hip shape is related to osteoarthritis:findings from in the MrOS cohort

    Get PDF
    BF conducted this research whilst on a clinical research primer fellowship awarded by the Elizabeth Blackwell Institute, University of Bristol, UK. This study was funded by Arthritis Research UK project grant ref 20244. CG is funded by Arthritis Research UK grant ref 20000. The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: R01 AR052000, K24 AR048841, U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128.Peer reviewedPostprin

    Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures

    Get PDF
    Chirality is a fundamental property of electrons with the relativistic spectrum found in graphene and topological insulators. It plays a crucial role in relativistic phenomena, such as Klein tunneling, but it is difficult to visualize directly. Here we report the direct observation and manipulation of chirality and pseudospin polarization in the tunneling of electrons between two almost perfectly aligned graphene crystals. We use a strong in-plane magnetic field as a tool to resolve the contributions of the chiral electronic states that have a phase difference between the two components of their vector wavefunction. Our experiments not only shed light on chirality, but also demonstrate a technique for preparing graphene’s Dirac electrons in a particular quantum chiral state in a selected valley

    Physics, Topology, Logic and Computation: A Rosetta Stone

    Full text link
    In physics, Feynman diagrams are used to reason about quantum processes. In the 1980s, it became clear that underlying these diagrams is a powerful analogy between quantum physics and topology: namely, a linear operator behaves very much like a "cobordism". Similar diagrams can be used to reason about logic, where they represent proofs, and computation, where they represent programs. With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of "closed symmetric monoidal category". We assume no prior knowledge of category theory, proof theory or computer science.Comment: 73 pages, 8 encapsulated postscript figure

    Survey of nucleon electromagnetic form factors

    Full text link
    A dressed-quark core contribution to nucleon electromagnetic form factors is calculated. It is defined by the solution of a Poincare' covariant Faddeev equation in which dressed-quarks provide the elementary degree of freedom and correlations between them are expressed via diquarks. The nucleon-photon vertex involves a single parameter; i.e., a diquark charge radius. It is argued to be commensurate with the pion's charge radius. A comprehensive analysis and explanation of the form factors is built upon this foundation. A particular feature of the study is a separation of form factor contributions into those from different diagram types and correlation sectors, and subsequently a flavour separation for each of these. Amongst the extensive body of results that one could highlight are: r_1^{n,u}>r_1^{n,d}, owing to the presence of axial-vector quark-quark correlations; and for both the neutron and proton the ratio of Sachs electric and magnetic form factors possesses a zero.Comment: 43 pages, 17 figures, 12 tables, 5 appendice

    Analytic properties of the Landau gauge gluon and quark propagators

    Full text link
    We explore the analytic structure of the gluon and quark propagators of Landau gauge QCD from numerical solutions of the coupled system of renormalized Dyson--Schwinger equations and from fits to lattice data. We find sizable negative norm contributions in the transverse gluon propagator indicating the absence of the transverse gluon from the physical spectrum. A simple analytic structure for the gluon propagator is proposed. For the quark propagator we find evidence for a mass-like singularity on the real timelike momentum axis, with a mass of 350 to 500 MeV. Within the employed Green's functions approach we identify a crucial term in the quark-gluon vertex that leads to a positive definite Schwinger function for the quark propagator.Comment: 42 pages, 16 figures, revtex; version to be published in Phys Rev
    • 

    corecore