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Abstrwt

A third harmonic electron cyclotron emission diagnostic using ultrawide

bandwidth (= 40 GHz) heterodyne receivers centered on 120 GHz with 14 channels

per radial view is describecj for localized, long wavelength (5 % X s 50 cm), fast

time response (= 1 ps) fluctuation studies in the PBX-M tokamak. The optically

gray emission signal will have a y ie/ne + (3/0)Te/Te dependence on temperature

and density fluctuations where y S 1 and 1 _ P: 3 depending on local optical

depth. Electron temperature fluctuation sensitivity is estimated to be 0.2% se' Te/Te

s 2.9% depending on local optical depth and fluctuation frequency in the 0.1 -1

MHz range. Spatial resolution of approximately 3 cm radially and 5 cm vertically

are estimated for 2 keV plasmas with low suprathermal electron emission.

Introduction

Localized temperature and density fluctuation diagnostics in a fluctuation

wavelength range ( 0.1 < k < 1 cm-1 ) are likely to play a key role in advancing our

understanding of confinement in magnetic fusion devices. This fluctuation

wavelength range is currently diagnosed with difficulty in tokamaks. However, it

is an important range because density fluctuations due to turbulence and drift

waves are known to peak here [1]. In addition, ballooning modes which may be

an important instability that could limit high beta and second stability tokamak

operation [2], fall in this range. Very little experimental data exists on ballooning

modes.
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Conventional microwave to infrared scattering density fluctuation

diagnostics cannot provide spatially localized or wavenumber resolved

information in this wavelength range because the Bragg condition

4n
k= sin- (1)

where k is the fluctuation wavenumber, X0 is the diagnostic wavelength and 0 is

the scattering angle, cannot be satisfied for diagnostic wavelengths that can

access the plasma unless the scattering angle is made so small that the

scattering volume is essentially chord averaged.

Infrared forward scattering in the Raman-Nath regime [3] by either

imaging the forward diffracted signal [4] or by phase contrast imaging [5] has

been shown to provide k resolution in this fluctuation range. Use of crossed

beams can make possible non-chord averaged spatially resolved measurements.

However, this is a rather difficult diagnostic to implement, requiring throughput

access across the entire plasma cross section being diagnosed and the optical

imaging of the signal on a many detector array.

By comparison electron cyclotron emission (ECE) is a relatively

simple, passive (in contrast to active laser and particle beam techniques), and

single view localized (in contrast to x-ray tomography) diagnostic of electron

temperature and its fluctuations when viewing an optically thick harmonic [6]. It

is sensitive to density fluctuations as well when viewing an optically thin

harmonic. MHD modes can be observed by looking at either temperature or

density fluctuations.
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Analytical Basis

PBX-M is ideally suited for ECE diagnostics because of its high aspect ratio

(> 5). When the aspect ratio is equal to 5 as shown in Figure 1, the second

harmonic, as defined by 2c where OCc is the electron cyclotron resonance

frequency, is not overlapped across the entire plasma cross-section. In addition

the third harmonic, 3 0 c, is not overlapped for most of the plasma cross-section

from the outside to over three-fourths of the distance toward the inside wall.

Therefore the 1/R dependent emission frequencies for these harmonics can be

uniquely related to radial location.

PBX-M has as a goal to operate at fairly high densities approaching 1014

cm-3 . To avoid cutoffs and refraction the PBX-M ECE fluctuation diagnostic must

make use of the third harmonic. For a nominal central field of 1.5 Tesla, this

would correspond to a frequency range of 105 to 140 GHz.

The harmonic resonances plotted in Figure 1 assume only the presence of

the vacuum toroidal field. With a plasma there can be additional poloidal and

toroidal field components that can add and subtract to the total field and

consequently affect the diagnostic's localization. In high beta experiments on

PBX-M, these components will be much larger than in typical tokamak

experiments. However even an extreme case, of a poloidal field 20% of the

vacuum toroidal field, would only increase the total field by 2% because the fields

add vectorially.

The ECE intensity from a thermal plasma is given by

Iece = Ibb (1 - e-e) (2)

where
O)2Te

Ibb = (3)
8WC2
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is the emission level of a blackbody at a temperature Te and

C Ope R 22t.1 kTe )-1 (4)

=2 cC (t-l)! 2mec2

is the optical depth in a tokamak of harmonic t where R is the tokamak major

radial component. The form of the optical depth given here is that of Engelmann

and Curatolo [71 which is valid for nonrelativistic electron temperatures

Te 5 8 keV.

For PBX-M plasmas the optical depth for third harmonic emission will be T3

5 1, a region referred to as optically gray. In this case it can be shown that the

fluctuating component of the emission will have a y ffe/ne + (3/) Te/Te dependence

where y 5 1 and 1 s . s 3 are determined by the local optical depth. The

fluctuation signal will be strongly dependent on electron temperature with a

weaker radial dependence on electron density. This should not pose a problem for

a gross identification of ballooning modes, but for a detailed interpretation of the

radial structure, electron and temperature profile data from other diagnostics

must be used.

Spatial resolution for a horizontally viewing diagnostic geometry will be

determined in the radial direction by relativistic Doppler broadening given by

Ar = R 27t (5)

For typical PBX-M parameters ( R = 1.6 m and T = 2 keV ) this corresponds to a

radial resolution of 2.8 cm. In the vertical and toroidal dimensions the spatial

resolution is diffraction limited which for a Gaussian beam is given by

Ah = 1.27 F# (6)
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where F# =L/d is the plasma viewing optics f-number with L the focal length and

d the clear aperture. At 100 GHz and with an F# of 14 this would correspond to a

resolution of approximately 5 cm.

Experimental Design

The ECE diagnostic system will be composed of a single sideband ultrawide

bandwidth (6 40 GHz) heterodyne receiver in the 100 to 140 GHz range, 14

intermediate frequency (IF) channels using state of the art multiplexer filters, a

quasi-optical antenna, and an overmoded circular TEii transmission line with a

TE11 to HE11 mode converter at the antennna. The bandwidth of this fixed

frequency local oscillator (LO) system is sufficient to view the entire unoverlapped

third harmonic emission in PBX-M at a field of 1.5 Tesla.

The quasi-optical antenna and transmission line system are

illustrated in Figure 2. The corrugated horn will produce a Gaussian

antenna beam which is focused by the teflon lens into the plasma through a

wedged quartz window. The HE11 corrugated horn mode will be converted

to a circular TE11 mode for transmission in a 12.7 mm diameter copper

guide with a transition to WR-8 guide at the receiver. Miter bends will be

used if necessary. A viewing dump [8] constructed of a suitable absorbing

vacuum material such as macor, boron nitride, or silicon carbide will be

used on the inner vacuum vessel wall. Transmission line losses are

estimated to be -1.5 dB for a 10 m long line from the horn to receiver. An

additional -1.2 dB loss is expected due to reflections at the lens and window

surfaces.

The receiver, shown in Figure 3, has a much larger bandwidth than

previously used in this type of system [9]. It will have a 100 GHz high pass filter
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following the scalar feedhorn to prevent viewing ECE emission in the receiver's

lower sideband. The RF signal will be downconverted in frequency from

102-140 GHz to 2-40 GHz with a mixer having a 6.5 dB conversion loss and 100 GHz

Gunn diode LO. The mixer will have a -40 GHz instantaneous IF bandwidth

which is possible with planar circuit technology and Schottky barrier beam lead

diodes (101. The resulting ultrawide IF bandwidth will be amplified by a

broadband amplifier from 2-40 GHz which is just now becoming available

commercially [11,12]. Monolithic microwave integrated circuit (MMIC) and

microwave integrated circuit (MIC) technologies have improved to the point of

providing workable low noise (-12 dB noise figure) and moderate gain (-10 dB)

ultrawide bandwidth amplifiers. The resulting system noise temperature

assuming a 4 dB front end loss is estimated to be TS = 50,000 K or 4.3 eV at the

plasma.

The amplified signal will be split into 14 individual channnels from 2 to 40

GHz with a combination of a diplexer and two 7 channel multiplexers [131. An off-

the-shelf diplexer will split the IF bandwidth into two channels of 2-18 GHz and

18-40 GHz. Additional amplification will be provided by commercially available

amplifiers for each of these frequency ranges [12] following the diplexer. Another

off-the-shelf multiplexer can easily be modified to provide 7 channels of

approximately 2.3 GHz bandwidth which will range from 2 to 18 GHz. A 7

channel multiplexer from 18-40 GHz with approximately 3 GHz bandwidths can

also be fabricated with suspended substrate stripline technology [13].

The 18-40 GHz multiplexer is technically harder to design, and

correspondingly higher in cost (factor of approximately 3) than lower frequency

multiplexers; however, an alternative receiver design based on two 0.1-18 GHz IF
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receivers to cover a - 40 GHz bandwidth would cost approximately the same.

Relative phase measurements between channels across the entire emission

spectrum for fluctuation wavenumber determination would also be more reliably

accomplished with a receiver using only one mixer/LO combination. The output

2.3 and 3 GHz multiplexer channel bands would be detected with square law

detector -diodes and amplified with 30 dB of voltage gain before being digitized.

The fluctuation level sensitivity of this instrument is given by the well-

known result of radiometer theory which was experimentally verified for tokamak

ECE [14]

rece 1
Tlece=

where Af is the channel bandwidth and t is the integration time. Maximizing the

channel bandwidth to correspond to the -2 GHz Doppler broadening at 2 keV

minimizes the observable fluctuations without sacrificing spatial resolution. The

integration time is limited by the flucutation frequencies of interest, which in this

case for Ballooning modes are expected to fall in the 0.1 to 1 MHz range. The

corresponding fluctuation level sensitivity therefore falls in the range f ece/Iee =

0.9 - 2.9% = y ie/ne + (3/p)Te,Te for the 2.3 GHz channels. This would also be the

sensitivity to electron temperature fluctuations if the plasma is optically thick (y =

0, 0 = 3). However if the plasma is optically thin (y = P =1) and fie/ne = Te,Te then

the observable fluctuation threshold would decrease to Te/Te = 0.2 - 0.7%.

It is planned that two of these ultrawide bandwidth receivers be built. The

ECE diagnostic will then simultaneously acquire temperature and density

fluctuations at 14 volumes along each of two horizontal chords; one equatorial
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chord will provide information to the radial mode structure, while an off-

equatorial chord will provide signals dependent on a combination of the radial

and poloidal structure of the mode. The second chord could also be displaced

toroidally for sampling toroidal structure. Such a simultaneous kr, k0 , and k

measurement capability has not been previously attempted by ECE fluctuation

diagnostics.

The data acquisition electronics would include 100 kilosamples per

second digitizers for all 28 channels to economize on cost, and 2 or more fast

transient digitizers of at least 20 megasamples per second for fast

fluctuation studies in select channels.
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Figure Captions

Fig. 1 Frequencies of the first five electron cyclotron harmonics as a
function of major tokamak radius. The shaded areas indicate
frequency overlapped regions.

Fig. 2 Illustration of the receiver front end components for the
PBX-M ECE diagnostic.

Fig. 3 Block diagram of a 14 channel ultrawide heterodyne receiver
using commercially available components for electron
cyclotron emission fluctuation diagnostics.
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